
Abstract
This white paper enumerates the essential characteristics of an enterprise obfuscation solution and assesses
its suitability and value within a layered security program and as a component of a risk-based IT control
framework.
Specific topics include:
•	 A summary of obfuscation technical capabilities and considerations,
•	 Identification of common system configuration management dependencies,
•	 Application lifecycle workflow and process requirements,
•	 Development, quality assurance and support best practice,
•	 Guidance as to when enterprise obfuscation can be an effective IT control,
•	 Enterprise obfuscation evaluation criteria,
•	 Guidance for incorporating obfuscation into an Agile process,
•	 Extending obfuscation from reverse engineering prevention to tamper detection and notification, and
•	 Synergy with other post-build functionality including instrumentation, optimization and linking.

Enterprise Obfuscation

Contents ©2013 PreEmptive Solutions. All rights reserved. v7/2013

The Three Dimensions of Enterprise Obfuscation.....................................1
Technology...1
Process...1
IT Control..2
The Fourth Dimension of Enterprise Obfuscation: Tamper Notification..3

Obfuscation Technology...4
The Obfuscation Approach..4
Representative Obfuscation Techniques...5
System Configuration...5
Obfuscation Side Effects, Implications and Best Practices...6
Best Practices...7

The Enterprise Obfuscation Process...9
Application Lifecycle Integration...9

Enterprise Obfuscation and Agile Software Development....................10

Obfuscation as a Compensating Control..11
Assessing the Need for Obfuscation..11
Why include an obfuscation control?..12

Enterprise Obfuscation Evaluation Criteria..13

Additional Capabilities and Benefits...14
Pruning...14
Watermarking..14
Linking and Packaging...14
Instrumentation..14
Shelf Life..14
Application Analytics..14

Conclusions: Obfuscators and Smoke Detectors.....................................14
Obfuscation is Like the Smoke Detector in Your Home..15

About PreEmptive Solutions..15

Table of Contents

Enterprise Obfuscation

1©2013 PreEmptive Solutions. All rights reserved.v7/2013

The Three Dimensions of Enterprise Obfuscation
Reverse engineering has become a common practice for support, training, and debugging of .NET and Java
applications. However, unmanaged access to application source code can also pose material risks including Intellectual
Property (IP) theft, application vulnerability exposure, and software piracy. For those organizations where these risks
must be managed, there is really only one safe option: obfuscation.

At its core, obfuscation is defined as a collection of transformations that are applied to compiled applications that
make reverse engineering materially more difficult for people and machines but do not alter the behavior of the
obfuscated application. However, the heightened emphasis on application security, compliance and development best
practices has rendered this definition inadequate. A complete definition must have three dimensions: technological, as
a development process, and as an IT control.

IT and Security Control
The cost/benefit of mitigating risk drives value

Technology
Capabilities increase effectiveness -

Effectiveness reduces risk

Process
Reduces cost and complexity
of adoption

Figure I: The three dimensions of enterprise obfuscation

Technology
Obfuscation transformations fall into a number of categories including:

•	 Renaming: altering the names of methods, variables, etc. to make source code more difficult to understand. Strong
renaming algorithms use overloading to reuse names, forcing every line to be analyzed.

•	 Control Flow Obfuscation: logic and flow are re-expressed making translation into valid C# (or any other language)
impossible. Sophisticated approaches provide different levels to strike the right balance between obfuscation and
performance.

•	 String Encryption: strings such as login prompts, SQL queries, etc. are encrypted and decryption function calls are
injected into the instruction stack before the string is needed.

•	 Other: there are numerous other techniques including metadata stripping, application watermarking, etc. that raise
the bar for reverse engineering above what is required to reverse engineer native code.

Process
The process of obfuscation has emerged as the pivotal element in driving the viability and the value of obfuscation.
Without a well-defined and integrated obfuscation process, the complexities and risks introduced by obfuscation may
ultimately outweigh the perceived benefits that it promises. Obfuscation can complicate debugging, patch generation
and management, distributed development practices and the reuse of libraries, components and web services.
However, tight integration with development platforms (such as Visual Studio), the Enterprise Obfuscation: Technology,
Process, and Control inclusion of tools and utilities that can unwind and/or reuse obfuscation transformations and,
lastly, integration with operations management platforms can mitigate these potentially costly side-effects.

Enterprise Obfuscation

2 ©2013 PreEmptive Solutions. All rights reserved. v7/2013

Obfuscation
Attributes

Source Code

Map
File

External
Dependencies

External
Con�guration

Obfuscator
• Obfuscates
• Compacts
• LinksAttributes

Compilier

Output
Assemblies

Integrated Development Environment

Figure II: Obfuscation development process
Figure II illustrates a modern approach to enterprise obfuscation. The developer best practice is to have programmers
indicate where obfuscation transformations may or may not be appropriate. For example, reflection may confuse
renaming transforms, high performance algorithms may call for less aggressive control flow settings or the elimination
of string encryption, and the most sensitive code may call for the most aggressive obfuscation settings. Obfuscation
transformations are applied after the build and do not require access to source code. During the obfuscation
transformation, additional services such as compaction (stripping of unused code to reduce size) and linking
(combining multiple DLLs into one to simplify distribution) can also be applied.

Further, all transformations should be captured (and previous transformations reused as appropriate) to support
the many development scenarios outlined above (debugging, patch management, etc.). Again, all of this should be
embedded within the integrated development environment to ensure continuous automation, transparency and
quality.

IT Control
Obfuscation can be defined as a compensating1, detective2
control to manage risks stemming from unmanaged source
code distribution. These risks include an increased likelihood of
system attack, theft of intellectual property, privacy violations
and revenue loss through circumvention of usage and other
metering enforcement. An obfuscation control includes the
documentation of obfuscation processes, the specific risks that
are being managed and the training/communication activities
that ensure obfuscation will be applied appropriately (e.g.
not over- or under-used) and consistently (using approved
technologies and practices).

Obfuscation is used to control the distribution of source
code to communities that need access to binaries but not
to source code. In environments like .NET and Java, where
extraction of source code from intermediate code is simple
and well-understood, obfuscation is a common antidote
to this source code access control gap. A survey of 300
international companies that included both SMB and global
2000 corporations reported three well defined risks connected
to the uncontrolled distribution of source code. Intellectual

1 “Compensating” refers to the fact that obfuscation is a control that compensates for a gap in a preexisting control, e.g. access control for source
code.

2 “Preventative” refers to the fact that obfuscation is a control that prevents an incident (reverse engineering) from occurring. Controls either prevent
or detect incidents.

Is source code access control a part of a
formal security policy at your company?

Enterprise Obfuscation

3©2013 PreEmptive Solutions. All rights reserved.v7/2013

property loss was cited slightly more often that the
other two categories but revenue loss and the exposure
of application security vulnerabilities were also clearly
important.

Given the widely understood risks that stem from
uncontrolled distribution of source code and the
expanding adoption of .NET and Java platforms that
dramatically lower the bar for source code extraction
from binaries, it is no surprise that obfuscation is a
common compensating control in these environments.

A second study looked at 2000 companies that had
been identified as having adopted an obfuscation
process within their application development processes.

Not surprisingly, the study found that obfuscation
was most heavily adopted within industries that
proportionately heavier reliance on software
development. Software vendors, financial services,
manufacturing telecommunications were the heaviest
adopters. However, it is worth noting that obfuscation,
like software development, cuts across all industries.

The following chapters explore the three dimensions of obfuscation with an eye towards helping organizations assess
their need for obfuscation and to provide a consistent set criteria that can be used to effectively and efficiently reduce
risk.

The Fourth Dimension of Enterprise Obfuscation: Tamper Notification
If you invest in fire prevention – don’t you also want fire detection? So, if an organization cares enough to invest time
and resources into reverse engineering prevention, wouldn’t that same organization benefit from reverse engineering
detection?

Four simple steps can extend obfuscation to provide tamper notification services enhancing obfuscated applications
to be able to self-diagnose and report on tampering whenever and wherever it may occur. Figure III illustrates these
steps.

Obfuscation
Attributes
Tamper
Attributes

Runtime
Assembly

Source Code

Map
File

External
Dependencies

External
Con�guration

Obfuscator
• Obfuscates
• Compacts
• LinksAttributes

Compilier

Output
Assemblies

Integrated Development Environment

3. No monitoring agents
Minimization of size
Increased protection

4. Ability to self-diagnose
and report on
tampering

1. No programming
required.

2. Source of tamper and
communication logic via

Attributes

Figure III: 4D obfuscation development supporting Tamper Notification
Step 1: Extend custom attributes (or annotations) to enable developers to indicate program inflection points enabling

Enterprise Obfuscation

4 ©2013 PreEmptive Solutions. All rights reserved. v7/2013

the obfuscator to instrument the obfuscated binary, e.g. to insert additional logic to detect tampering. There is no
programming required. This reduces the effort required to implement this service and reduces training overhead.

Step 2: Tamper detection and communication logic is delivered as a part of the obfuscator in a runtime library. This
logic is then injected into the compiled and obfuscated application after the build. This improves both the quality and
the consistency of transmitted data. How and where this logic is injected is constrained by the developers using the
attributes/annotations in step 1.

Step 3: The obfuscator uses linking to weave the additional DLLs into the final binary and compaction to minimize any
potential increase in application size that may result from the addition of Tamper.

Step 4: The result is a single, agent-less application that is able to diagnose its own tampering and report back to both
its developers and its enterprise owners.

Those who lose sight of the fact that the organizing principle behind obfuscation is the requirement to manage risk
also undervalue the importance of the obfuscation process. The result is a one dimensional view of obfuscation as
a finite set of technology limited to the transformation of application binaries. However, the emergence of Service
Oriented Architecture (SOA) and Software as a Service (SaaS) combined with a growing recognition that the most
effective IT controls must bridge the development lifecycle and operations management has made it possible, for the
first time, to prevent reverse engineering and to detect tampering when it should occur.

Obfuscation Technology
The goal of obfuscation is to prevent a specific category of access control violation: the reverse engineering of binaries
to gain unauthorized access to source code. Obfuscation is designed to achieve this goal while accommodating the
unique requirements that binaries present as a unique data type-requirements that create potentially serious problems
for traditional access control strategies.

In order to be effective, obfuscation must make reverse engineering materially more difficult without altering an
application’s behavior or access control profile. In practice, obfuscation is a general term that refers to a collection of
techniques that meet these dual sets of requirements.

Control Implication for Binary Access
Restrict Read/Execute Access •	 Cannot find or execute binary making this approach ineffective for groups that

need to execute binaries
•	 Role and evidenced based security structures may effectively restrict read/

execute access in circumstances where the binary is controlled/not distributed
Encryption •	 Effective for transit and storage only – binary must be decrypted to execute

which returns binary to original state
•	 Including native code to decrypt managed code at runtime makes validation of

the application impossible, violating IT controls within many enterprises
•	 Encryption offers a high degree of protection related to its objective

Obfuscation •	 Does not restrict execution of binaries because it is independent of access
control settings

•	 Is effective/persistent on disk, during transit and execution
•	 Generates 100% valid intermediate/managed code
•	 Effectiveness of obfuscation techniques vary depending upon the nature of the

transforms

The Obfuscation Approach
Obfuscation works by removing the context that humans and decompilers use to understand the functionality of a
program. Consider the following two versions of the same message, responding to the question, “how many tickets
should I buy?”

Enterprise Obfuscation

5©2013 PreEmptive Solutions. All rights reserved.v7/2013

Email “in the clear” Pseudo “Obfuscated” email
From: Mark
To: Bill
Subject: RE: how many tickets should I buy?
Bill, I already bought 15, so all we need is 7
more. Looking forward to seeing all of you tonight
as we agreed.

To: Bill
From: Mark
7

Both messages can be delivered and answer Bill’s question, but the “obfuscated” version has been stripped of its
context. An unauthorized reader would not know that this is a reply to a question or that Bill is being asked to
purchase 7 tickets or that 15 other tickets have already purchased and that the entire group will be meeting later that
night.

In simple terms, this is how obfuscation works – by applying multiple transformations that strip away information
and alter structure to make the code less understandable to humans and decompilers while preserving integrity and
behavior.

Representative Obfuscation Techniques
The following techniques are applied to compiled binaries – not to source code – to generate a new set of one or
more binaries that exhibit equivalent behavior.

Identifier Renaming
Program identifiers including classes, interfaces, methods, fields, method parameters, generic type parameters, etc. are
renamed to remove all meaning. “GetPayroll” becomes “a”. Advanced renaming capabilities overload these new names
on a massive scale by tracking the scope of each identifier and reusing names on multiple identifiers where there is no
overlap. This increases security because every identifier must be individually analyzed since every use of “a” may in fact
be an entirely different identifier renamed to the same new name.

Control Flow Obfuscation
High level source flow is compiled into a sequence of instructions that closely mirrors the original source. Control flow
obfuscation transforms the original instruction sequence into a logically equivalent sequence with the intended side
effect that the new sequence will not decompile back to the original source. Often, decompilers will output incorrect
code, crash, or terminate with an exception.

Metadata Removal
Not all metadata is required to execute an application. For example, on the .NET platform, some properties,
events, method parameter names, and custom attributes can be stripped, removing relevant information about the
development process and developer intent without impacting execution.

String Encryption
While encrypting an entire application has well understood limitations, encrypting strings within an obfuscated
binary at obfuscation time adds another effective layer to the obfuscation approach. Decryption is accomplished by
embedding a decryption method call immediately after every string load instruction and replacing the encrypted
string on the stack with the “clear” string at runtime. This provides the benefits of encryption while still offering
significant protection during runtime.

System Configuration
The following components represent the basic building blocks of an enterprise obfuscation function that can
be inserted within a build process. While other configurations are certainly possible, this approach has proven

Enterprise Obfuscation

6 ©2013 PreEmptive Solutions. All rights reserved. v7/2013

flexible enough to accommodate multiple libraries and assemblies, patch generation and distributed development
workgroups.
•	 Input Programs - Any .NET exe or DLL (MSIL)
•	 External Dependencies - Dependent DLLs
•	 External Configuration - XML configuration file
•	 Obfuscator - Post Compilation Protection System
•	 Output Programs - Smaller, harder to reverse engineer .NET exe or DLLs (MSIL)
•	 Build Maps - XML file containing information on how renaming was done and what attributes were applied.

Obfuscation Side Effects, Implications and Best Practices
Obfuscation transformations are, by design, intended to profoundly alter the way a binary appears. Effective
obfuscation offers significant security and performance benefits. However, obfuscated binaries do not discriminate;
they are as opaque to “good guys and good programs” as they are to “bad guys and bad programs.”

Anticipating and accommodating the expected consequences of including obfuscated binaries into a complete
application development lifecycle ensures that obfuscation benefits will be maximized and that any associated
complexity or risk is minimized.

The control options and risks associated with source code distribution and obfuscation are complex. To provide an
overview, the following graphic summarizes the benefits, implications and potential side effects of obfuscation on
security, performance and lifecycle management. Dark green indicates a positive feature or outcome, red highlights
a caution that should be assessed before selecting or implementing a specific obfuscation solution and light green
represents functionality that can compensate for and minimize the complexity and risk of incorporating obfuscation
into the development lifecycle. The features and outcomes are discussed in the sections following the illustration.

Security Performance Lifecycyle Management

Renaming, elimination of
unneeded metadata and
pruning can reduce size by
up to 70%.

Manage obfuscation decisions across lifecycle
including patches

Continuous integration
assures developer control

IDE integration ensures obfuscation bene�ts are
maximized and complexity is minimized.

Declarative obfuscation ensures developers can apply,
test and verify all obfuscation decisions.

De-obfuscator extension unwinds obfuscations to
support development, QA and support.

Obfuscated binaries
are opaque to
debuggers and to
nonobfuscated
programs

Watermarking to track
distributed binaries.

Limit the uncontrolled
distribution of source code
through reverse engineering
of .NET and Java binaries.

Flow control can
alter performance
footprint

Code injection and
renaming can
change size

Enterprise Obfuscation

7©2013 PreEmptive Solutions. All rights reserved.v7/2013

Debugging
The purpose of obfuscation is to make it as difficult as possible to connect a binary to its original source code. Without
a well-defined and reliable “de-obfuscation” tool that enables development, QA and support to unwind obfuscated
binaries, the debugging process can be complicated or even impeded by obfuscation.

Performance
Obfuscation has the potential to alter an application’s performance footprint. Control flow obfuscation can, in
some instances, degrade a finely tuned algorithm. Conversely, identifier renaming may reduce the size – and
therefore the load time – of an entire application. Developers need a means to selectively test and apply obfuscation
transformations at a fine grained level within an application to ensure that they can achieve the maximum benefits of
obfuscation while eliminating the potential for unexpected side effects.

Size
Obfuscation can also alter the size of an application. The insertion of a string decryption method will increase the
overall size of an application. However, the most common result of obfuscation is to reduce the size of an application.
In addition to the shortening of identifier names, some obfuscators will also “prune” those portions of applications
and third party libraries that are included but never called. Effective use of pruning and identifier renaming typically
can reduce the size of an application by 30%-40% and sometimes as much as 70%.

Patch Management
Renaming decisions and other decisions that are potentially unique to each obfuscation process must be carried
forward into subsequent builds to ensure compatibility. This also applies to patches and components that may be built
and obfuscated at different times and locations. An effective integration into the IDE combined with the appropriate
obfuscation utilities simplifies the management of this touch point within the development lifecycle.

Best Practices
The most effective approaches to assimilating obfuscation into the development lifecycle combine tool and process
extensions with a modest amount of awareness. This section summarizes the best practices that sophisticated
development organizations have found to be effective.

Declarative Obfuscation
Developers know their code better than anyone else. The most efficient and effective means to ensure that source
code is obfuscated correctly without unintended or unexpected side effects is to provide a set of attributes that permit
developers to specify (declare) which obfuscation transformations should (or should not) be applied to any portion of
their code. Ideally, these attributes are recognized by their IDE and can be tracked, validated and shared. The benefits
of this approach include:

•	 Individual developers of a module can specific where to apply specific transformations anywhere within their code,
e.g. renaming, string encryption, control flow obfuscation, etc.

•	 Elimination of configuration files at build time

•	 Component providers and other developers of reusable components can embed obfuscation requirements into
their code for others to use

Distributed and Secure Debugging
Developers, QA and support personnel all have occasion to debug binaries. Virtually the only stage in a development
process that does not typically debug binaries is the manufacturing or build function. An obfuscation solution must
provide a cost-effective, lightweight and low maintenance utility to support distributed debugging of obfuscated
binaries without requiring the complete obfuscation solution or access to the build environment. A de-obfuscator
should accept the debugging symbol files for obfuscated applications and use this information to “unwind” the

Enterprise Obfuscation

8 ©2013 PreEmptive Solutions. All rights reserved. v7/2013

obfuscated assembly to simplify the debugging process. The benefits to this approach include:

•	 Existing development, quality and support functions and processes are uninterrupted.

•	 Build environments are not compromised by debugging activities not normally supported.

•	 Heavy-weight obfuscation solutions do not need to be widely deployed or administered.

IDE Integration
An integrated obfuscator should work as part of the preferred integrated development environment. For example, a
Visual Studio solution should be recognized as a native project type, accept input files from one or more other Visual
Studio Projects (such as C# or VB.NET projects) and be able to resolve all dependencies and privileges automatically.

This screen capture illustrates an example of an IDE with integrated obfuscation capabilities. The following capabilities
can be seen.

The benefits of IDE integration include:

•	 Reduced build errors

•	 Improved tracking of previous obfuscation maps to support debugging and patch management

•	 Increased automation, process transparency and quality

Patch Management
Patch management is of particular interest to enterprise development teams maintaining an integrated application
environment. By generating name mapping records during an obfuscation run, obfuscated API names can be
reapplied and preserved in successive runs. A partial build can be done with full expectation that its access points will
be consistently renamed across builds. The benefits of this approach include:

•	 Patch generation and distribution processes are uninterrupted

The ability to see the new
names - notice how most
methods were renamed
to “a”

The ability to connect the
obfuscator to the .NET
project (C#, VB.NET, etc.)

The ability to see the
output log

Enterprise Obfuscation

9©2013 PreEmptive Solutions. All rights reserved.v7/2013

•	 Modules that have not been modified and have been distributed do not need to be reobfuscated or redistributed

Continuous Integration
Organizations that have incorporated a continuous integration development approach should include the obfuscation
step for their developers doing unit testing. This is particularly true when developers are taking advantage of
declarative obfuscation as these developers may want to evaluate the impact of applying specific obfuscation
transformation on their work. The benefits of this approach include:

•	 Developers can assess the impact and value of obfuscation on their code before checking their work in.

•	 Build, linking and other dependencies can be identified and resolved earlier in the development lifecycle.

The Enterprise Obfuscation Process
The obfuscation process integrates obfuscation functionality into the application development lifecycle specifically
supporting the development, testing, integration, manufacturing, application support and patch management phases
of development.

Application Lifecycle Integration
Organizations that do not distribute source code with binaries obfuscate those binaries to reduce the risk of system
attacks, Intellectual Property theft and revenue loss due to metering circumvention.

Properly applied, obfuscation offers a means to reduce risk that arises from the uncontrolled
distribution of source code.

The figure on this page illustrates the multiple touch points that a mature obfuscation solution must maintain in order
to reduce risk within a well defined application development process.

Develop

Test

Build

Distribute

Develop

Test

Build

Patch or
Replace

Triage

Support

Deploy

Develop

Test

Build

Develop

Test

Build

Continuous
Integration

Support

IDE Integration

1

2 3

3

2

3

4

1

Declarative obfuscation controls: Developers know their code
the best. Using the XML-defined attributes can specify which
transformations to apply, how they should be applied and where
within an application to apply them. Declarative obfuscation
supports an arbitrary level of granularity enabling the maximum
degree of obfuscation with the minimum degree of side effects.

Configure & apply obfuscation transformations: SCM or
build managers configure and execute the final obfuscation
transformations. These capabilities should be extensible to include
support for unit testing, continuous integration processes.

De-obfuscation for efficient debugging: A distributed capability
that can unwind obfuscated binaries providing an effective
connection back to the original source code. Debugging is rarely
effective when restricted to build machines.

Incremental obfuscation transformation: The ability to obfuscate
patches that both prevent access to source while maintaining
compatibility with previously obfuscated and distributed binaries.

Integration with preferred IDE’s and deployment flexibility to support today’s distributed work environments are the
final elements of an effective obfuscation process.

1

2

3

4

Enterprise Obfuscation

10 ©2013 PreEmptive Solutions. All rights reserved. v7/2013

Enterprise Obfuscation and Agile Software Development
The next step in establishing an effective obfuscation control is to instantiate a consistent means of assessing how
and when to apply obfuscation. Once the specific integration points between the development lifecycle and the
obfuscation process have been identified (see the previous section), integration with a development methodology
such as Agile software development can be used to ensure that this control is consistently and appropriately applied.
Agile is a conceptual framework for undertaking software engineering projects. Agile methods emphasize real time
communication, preferably face-to-face. Figure IV illustrates how obfuscation may be integrated into “Iteration 0” – the
planning stage for a development project.

ITERATION 0

Initial high-level
scope and require-

ments modeling

Initial
Architectural

Modeling

Primary deliverable
= User Stories

Primary deliverable =
Security Requirements

Threat Model
(S.T.R.I.D.E.)

Obfuscate
Application

Code
Obfuscation

Tamper
Noti�cation

Story Card Title
Description:
Business Context:
Scope Exclusions:
Story Narrative:
Security Requirements:
Technical Description:
User Acceptance Test -
Success Criteria
Security Acceptance Test -
Success Criteria

Document describing
security tools and
con�guration needed for
Unit and Acceptance
Testing.

Document scenarios for
Deployment testing of
speci�c application
security requirements.

QA Test Cases

Build Environment
Description

Story Cards

Artifacts
The Architect or Technical Lead
determines applicability of source
code obfuscation. Details are under
“Security Requirements” section of
story card.

Architect prepares preliminary
Threat Model in accordance
with best practices. Identi�ed
risks can include reverse
engineering.

Security requirements
include application
obfuscation via the
integration of third-party
tools.

Source code obfuscation testing is
classi�ed as Security Acceptance
Testing (S.A.T.) and performed in
conjunction with User Acceptance
Testing (U.A.T.).

Installation and con�guration
of source code obfuscation tool
on build machine is described
in detail.

Test cases are created
for full system tamper
noti�cation testing.

Figure IV: Integrating obfuscation into Iteration 0 of the Agile development process
In iteration 0 of the Agile approach, the development project is set up and basic planning is carried out. The risks from
reverse engineering must be factored into the broader threat modeling and risk management frameworks that guide
and inform design and development priorities.

Once the level of risk has been gauged, strategies to mitigate these risks including obfuscation and tamper notification
can be included as development requirements. Further, the details on which tools, how they will be deployed and their
effectiveness measured are all included in Iteration 0, the project planning phase.

Enterprise Obfuscation

11©2013 PreEmptive Solutions. All rights reserved.v7/2013

Developer assigned
to story card
generates code to
satisfy functional and
security (Source Code
Obfuscation and/or
Automated Tamper
Detection)
requirements of that
story card. Developer
unit tests code to
satisfy functional
requirements.
Successful code is
added to new Build.

User Acceptance
Testing and Security
Acceptance Testing
(Source Code
Obfuscation) is
performed on the
new Build.
Requirements for
Source Code
Obfuscation include
the code to be
obfuscated, which is
veri�ed with each
Build.

Full system testing
including load,
performance and
“Black Box.”
Performance testing
on Builds with
Obfuscated Source
Code vs.
non-Obfuscated
Source Code are
executed.

Estimate/Prioritize Development Daily Build

Iteration 0 Release Planning
Phase

Development
Phase

Failed Tests

Development/Construction
Phase (Iterations 1...N)

See �gure above
for composition of

Iteration 0 Story Cards
.......................
.......................

Figure V: Integrating obfuscation into Iterations 1 – N of the Agile development process.
In iteration 1, after additional planning for future cycles, the team carries out some development activity. In the
subsequent iterations (2 to N-1), the team does all of this, plus tests the development work of previous iteration(s) and
adjusts the goals and scope of the solution based on the feedback and testing. Finally, in iteration N, the team finishes
testing and releases the solution.

Figure V illustrates how developers, QA and build managers incorporate, verify and assess the effectiveness and
backward compatibility of obfuscated code. Further, coverage, e.g. the percentage of code that should be obfuscated
versus the percentage of code that is actually obfuscated, can also be measured.

The net result of this integration into an established development process is that obfuscation (including its role as
a detective control reporting on application tampering) can be reliably and efficiently incorporated into mature and
scalable development environments. Documenting, automating and continuously improving the obfuscation process
assures maximum risk mitigation while minimizing the potential to introduce its own risk and complexity.

Obfuscation as a Compensating Control
Organizations in every industry are incorporating obfuscation into their IT control practices in order to satisfy the
many regulatory, governance and other compliance obligations they face. The goal of obfuscation is to produce
programs that are materially more difficult for unauthorized individuals to understand or modify. Obfuscation is a
compensating control filling a well-understood access control gap for source code in Java and .NET environments.

Assessing the Need for Obfuscation

Who Needs to Know Your Source Code?
There is a near universal consensus3 that access to information should be granted on a “need to know” basis as
part of a “least privileged” access control governing policy. Given the ease of extracting source code from binary
in contemporary environments like Java and .NET, the tautology of source=binary is now a fact. The question to
evaluate is who has a “need to know” your source code and is that community smaller than the community that has

3 COBIT, ITIL and COSO control frameworks as well as guidance from the Institute of Internal Auditors

Enterprise Obfuscation

12 ©2013 PreEmptive Solutions. All rights reserved. v7/2013

read access to the associated binaries? One extreme use case is the open source community. Clearly, obfuscation
holds no value as the source code is widely available by design. Conversely, many software vendors, financial service
providers, manufacturers, defense contractors, etc. rely upon software to meter usage (access, billing, etc), protect
privacy and ensure operational continuity and along the way they embed into their source proprietary business rules,
programming logic, etc. All of these typically represent material value and their loss or dysfunction represents material
risk.

A Layered Approach to Application Security
If binaries are distributed widely, application vulnerabilities such as susceptibility to SQL injection, buffer overflows, etc.
are a growing concern.

While defensive programming is probably the most effective control (eliminate vulnerabilities where possible),
obfuscation is often used as an additional security layer to shield any unknown (or undetected) vulnerabilities. Layered
security is a widely accepted best practice. Banks continue to secure their vaults within a building, behind locked
doors, guarded by professionals and monitored by the police.

Identifying Specific Risks that Stem from Uncontrolled Distribution of Source Code
Source code access controls are designed to mitigate risks that stem from

•	 Exposure of coding practices that increase likelihood of successful system attacks, information theft and privacy
violations

•	 Publication of intellectual property resulting in reduced company value, increased competition and an increase in
legal defense expenses

•	 Application modifications “in the field” to circumvent metering functions that govern products and services
reducing revenue and profitability.

From an ROI perspective, a control is justified if the difference between the cost and risk of implementing a control is
meaningfully lower than the cost and risk of not implementing the control. The potential damage and the likelihood of
occurrence of these or other risks must be established on a case by case basis.

Demonstrating “Due Care” to Minimize Liability
Risk management and security programs offer more than a return on investment; they are part of a broader obligation
to customers, employees and investors to operate a sound business. Neglecting that broader obligation can be
interpreted as a breach of responsibility and carries with it a potentially serious liability. Auditors, regulators and
the courts look to standards of behavior to measure how effective organizations are in preventing, remediating,
monitoring and continuously improving compliance and security programs. Organizations that can demonstrate an
effective and sustained program to mitigate risk, liability can be reduced and sometimes even avoided.

Due care is demonstrated by erecting an ascending series of barriers that

I. Discourage the opportunistic

II. Impede the malicious

III. Deter the skillful

IV. Identify and enable punishment of the successful

Obfuscation is a way to accomplish (I) above, and failing to do that, it increases the difficulty of (II) through (IV).

Why include an obfuscation control?
•	 A layered approach to security is an acknowledged best practice,

•	 The cost of implementing an obfuscation solution represents a tiny fraction of the investments into application
development and

Enterprise Obfuscation

13©2013 PreEmptive Solutions. All rights reserved.v7/2013

•	 The operational, financial and regulatory risks that stem from system attacks, IP theft and revenue loss can be
catastrophic.

A well implemented obfuscation process offers a low cost, low maintenance control for material risks stemming from
access to source through Java and .NET binaries.

Enterprise Obfuscation Evaluation Criteria
Organizations in virtually every industry are incorporating obfuscation into their application development lifecycle
process. Application security, IT Governance and risk management programs have created a greater awareness of the
need to protect against the uncontrolled distribution of source code. This increased awareness has also produced
a more comprehensive understanding of what is required to effectively use obfuscation within broader security, IT
governance and risk-based initiatives.

Every organization must develop and maintain an appropriate set of process and controls to manage these issues.
While this broad requirement is essentially universal, there is no “one size fits all” solution for application security.
Every organization must assess their specific needs and risks in order to settle on an appropriate set of processes,
controls and technologies. The following five high-level questions can be used to capture the essential characteristics
of an obfuscation solution to ensure a proper and effective fit with the needs and requirements of a business.

Questions to Ask an Obfuscation Solution Provider
1.	 How does their obfuscation solution fit into your company’s application lifecycle and continuous integration

framework?

•	 Can developers markup code to ensure maximum obfuscation without loss of control?

•	 What is the solution for debugging and managing patch releases for obfuscated binaries?

•	 Is their a distributed, yet secure, deployment model that can accommodate support, operations and QA as
well as your collaborative development processes?

2.	 What specific obfuscation, compaction and watermarking technologies are available?

•	 Are they unique? Patented?

3.	 Is there support for more than one platform?

•	 Is .NET and Java supported? Is the technology integrated into your IDE?

4.	 Can the solution be configured to accommodate your organization (size and distribution)?

5.	 What kind of support, upgrades and quality assurance is guaranteed?

The “right” answers to many of these questions are obviously dependent upon how and where the solution is going
to be deployed. Still other responses will be assigned more or less weight for the very same reasons. This variability
of acceptance criteria and value applies both across organizations and within a single organization over a prolonged
period of time.

Given the potential lifespan of applications and the distributed and heterogeneous development practices that are
emerging, it is particularly critical that an obfuscation solution provider must develop their products, organize their
business and align their strategy to ensure sustained technology leadership, flexible process and control capabilities
and reliable support infrastructure.

Enterprise Obfuscation

14 ©2013 PreEmptive Solutions. All rights reserved. v7/2013

Additional Capabilities and Benefits
The obfuscation function requires a sophisticated static analysis of binaries. The techniques required for effective
obfuscation also have applications to a number of other capabilities that can be applied concurrently with obfuscation.
These include:

Pruning
Pruning is the identification and removal of unused code. As part of the obfuscation analysis, it is also possible to
determine unneeded elements. The compaction or pruning process can then remove unused classes, methods,
instance variables, design time metadata, and actual MSIL to produce a much smaller application. Size reduction
caused by pruning can be significant with many applications showing up to a 70% size reduction. A typical size
reduction falls between 30% and 40%.

Watermarking
Software watermarking can be used to hide customer identification or copyright information into software applications
and can be used to identify owners of the software or track the origin of a pirated copy. Software watermarking
is similar to watermarking in other digital such as songs, movies and images. An obfuscator can be a particularly
effective tool to insert a watermark because its operation can be, by its very nature, difficult to find or to alter.

Linking and Packaging
An obfuscator can optionally merge simplifying distribution and installation.

Instrumentation
Obfuscation transforms existing code; Instrumentation supplements existing code through injection. Instrumentation
can be further optimized in combination with pruning and linking to increase the likelihood that the original
application format is preserved. Examples of instrumentation include Tamper (see The Fourth Dimension of Enterprise
Obfuscation: Tamper Notification), Shelf Life (application inventory control), and Analytics.

Shelf Life
Shelf Life defines an application’s enabling an application to self monitor and retire itself using business appropriate
behavior.

Application Analytics
Application analytics are used to govern IT applications and to track feature usage customer experience improvement
programs, and the tracking of evaluation activity are all examples of where application analytics can add significant
value.

Note: Contact PreEmptive Solutions for detailed information on commercial instrumentation solutions in the solution
categories mentioned above.

Conclusions: Obfuscators and Smoke Detectors
The empirical evidence is indisputable; tens of thousands of development groups have made the decision to include
obfuscation in their development process. Loss of revenue, operational disruption and loss of intellectual property are
real threats that can arise from the uncontrolled distribution of source code. This begs the question as to why we don’t
hear more about this risk and why, if the potential damage can be so great, .NET and Java continue to be among the
fastest growing development platforms of our time.

Enterprise Obfuscation

15©2013 PreEmptive Solutions. All rights reserved.v7/2013

Obfuscation is Like the Smoke Detector in Your Home
The answer lies in the likelihood of occurrence – not in a dispute over the potential damage. A calamitous threat that
has a low potential of occurrence is not a new phenomenon and there are proven approaches to manage this category
of risk. The low cost, low maintenance and ubiquitous smoke detector is an every day example of how to effectively
manage a high cost/low likelihood risk.

A home fire threatens both life and property but is a relatively rare event. A smoke detector’s value proposition
combines a proven capability to reduce loss with a low cost and minimal maintenance process that is commensurate
with the relatively low likelihood of occurrence.

The cost of an obfuscation solution represents a tiny fraction of the potential loss that it protects against.

While most people may be able to live their entire lives without a smoke detector, society is far better served by
mitigating this risk in a broad and consistent fashion; that is why it is often illegal to sell a home without proof of an
effective smoke detection system.

Obfuscation of Java and .NET binaries should be a staple of any application development process where source code
is not widely distributed. Hopefully, for any given development team, they will never have needed the protection that
obfuscation afforded them – but we also know that some teams most definitely will benefit and for those that skipped
this simple step – the cost may be quite severe indeed.

It would be irrational to avoid living in a home to avoid the risk of a fire, but it is also irresponsible, and in some
jurisdictions illegal, to not take simple precautions to minimize known risks.

.NET and Java environments offer tremendous advantages that far outweigh the easily managed risk of source code
extraction from binaries.

Of course, hotels and restaurants have both a higher potential for loss and an increased likelihood of occurrence. The
resulting requirements and penalties are proportionately higher.

Uncontrolled source code distribution holds varying degrees of risk that can be segmented by industry segment.
Software vendors, financial service providers, telecommunications companies, manufacturers and other businesses
that rely on applications to generate revenue, assure business continuity and whose applications represent unique
intellectual property have a greater risk with proportionately higher requirements and more severe penalties for failure.

About PreEmptive Solutions
PreEmptive Solutions provides software and managed services that monitor, measure, and protect applications
across on-premises, cloud, internet, and mobile platforms. With software on millions of developer desktops,
PreEmptive Solutions is the recognized leader in application analytics, intellectual property protection, and anti-
tampering software. Leveraging PreEmptive Solutions’ application analytics and protection solutions, development
organizations materially improve application quality, user satisfaction and development ROI across today’s distributed
and increasingly heterogeneous computing architectures. To learn more, email solutions@preemptive.com or call
440.443.7200.

Worldwide Headquarters
767 Beta Drive, Suite A
Mayfield Village, OH 44143
Phone +1 440.443.7200
solutions@preemptive.com

European Headquarters
140 bis rue de Rennes
75006 Paris, France
Phone +33 01.83.64.34.74
eurosolutions@preemptive.com

©2013 PreEmptive Solutions. All rights reserved.

Visit us at www.preemptive.com

Find us:

v7/2013

http://twitter.com/preemptive
http://www.linkedin.com/company/preemptive-solutions
http://www.youtube.com/user/PreemptiveSolutions
http://www.facebook.com/preemptivesolutions

	The Three Dimensions of Enterprise Obfuscation
	Technology
	Process
	IT Control
	The Fourth Dimension of Enterprise Obfuscation: Tamper Notification

	Obfuscation Technology
	The Obfuscation Approach
	Representative Obfuscation Techniques
	System Configuration
	Obfuscation Side Effects, Implications and Best Practices
	Best Practices

	The Enterprise Obfuscation Process
	Application Lifecycle Integration

	Enterprise Obfuscation and Agile Software Development
	Obfuscation as a Compensating Control
	Assessing the Need for Obfuscation
	Why include an obfuscation control?

	Enterprise Obfuscation Evaluation Criteria
	Additional Capabilities and Benefits
	Pruning
	Watermarking
	Linking and Packaging
	Instrumentation
	Shelf Life
	Application Analytics

	Conclusions: Obfuscators and Smoke Detectors
	Obfuscation is Like the Smoke Detector in Your Home

	About PreEmptive Solutions

