
Whether developing for the
enterprise or the consumer,
the cloud or the data cen-
ter, the web or the phone,
the following articles offer
specific techniques to satis-
fy both users and stakehold-
ers alike.

The blank canvas of
PreEmptive Analytics

offers development free-
dom but holds special

rewards for good design.

Only the developer knows
what runtime data can pro-
vide critical insight into
software quality, application
value and user experience.

Through a unique set of
technologies that capture,
transport, analyze and pub-
lish custom, complex and
rich data, PreEmptive Ana-
lytics has taken a fundamen-
tally different approach to
application monitoring that
sets it apart from web ana-
lytics, network monitoring
and debugging alternatives;
but with that power comes re-
sponsibility.

 In order to guarantee that
developers have the free-
dom to gather what they
require without impacting
application performance or

stability itself, PreEmptive
Analytics implementations
are configured entirely by
the developer.

Like a painter presented
with a blank canvas, the
developer paints a picture
of their app by adding just
the right details but no
more.

Whereas operations moni-
toring solutions deliver a
mountain of data forcing the
developer to chip away like
a sculptor and web tools
restrict the developer’s pal-
ette to the simplest of col-
ors, PreEmptive Analytics
offers development a com-
plete spectrum of op-
tions—from system to ses-
sion to application and user-
specific data.

THE FINE ART OF PREEMPTIVE ANALYTICS

OOPS—DID I DO THAT? (ANALYTICS GONE WRONG)

The following examples are
all true: the app and the
developers’ identities have
been hidden to protect the
innocent (or at least the
naïve).

Feature usage does not
equal network monitor-
ing. Feature tracking was

placed on the “packet re-
ceived” method inside a
popular open source net-
work device driver.

Hardware specs are not
user preferences. A multi-
Mb manufacturing spec was
stuffed into a single custom
data property.

Runtime is not real-time.
A performance probe was
placed inside a mobile
game’s “physics engine.”

If these examples make you
cringe (and especially if they
don’t), the following arti-
cles should serve you well
as a development resource.

PREEMPTIVE SOLUTIONS

PREEMPTIVE ANALYTICS DEVELOPMENT T IPS

AND RECOMMENDATIONS

SPECIAL POINTS OF

INTEREST:

 Tips to monitor apps with
especially heavy usage

 Tips to capture actionable
exceptions versus every ops
hiccup

 Capture custom data that
matters

 Avoid common program-
ming mistakes

INSIDE THIS ISSUE :

SETUP/TEARDOWN 2

FEATURE USAGE 2,3

EXCEPTIONS 3

APP PROFILING 4

CUSTOM DATA 4

PREEMPTIVE SOLUTIONS © 2011

Setups and Teardowns should
completely cover entry and
exit points.

 Ensure there is no way to
start the application without
hitting a SetupAttribute. For
example, you will want to tag
both the Application_Started
and Application_Launching
methods in WP7 apps.

It is possible that one might
want to only instrument a
specific part of an application
that is guaranteed to execute
no more than once per app
run – in this case, be sure to
completely cover all entry
and exit points for that specif-
ic part of the application.

 Make sure entry points
have the same CustomEnd-
point and UseSSL option.

 Configure an OptInSource
if you want to give the user an
opportunity to opt in/out of
message collection. Once
this Boolean value is read
during the injected code for
the SetupAttribute, it cannot
be changed until the next app
run.

 Configure an InstanceId-
Source if you want to be able
to uniquely identify each indi-
vidual user. You can use any
runtime string (e.g. the user’s
email address, serial num-
ber…) or you can generate

and store a GUID.

The Serial Number report
shows data by serial number,
and the filter bar allows you
to filter by the InstanceId /
Serial Number.

 Configure an Extend-
edKeySource to collect any
custom data to be reported
once at the beginning of each
app run. For example, you
might collect information
about available devices and
peripherals relevant to your
domain that are unlikely to
change during the application
run.

THE ON SWITCH : STARTING UP

THE OFF SWITCH : CLEANING UP

custom data to be reported
once at the end of each app
run. For example, you might
collect information about the
peak memory usage of the
app or the number of times
certain tasks were executed.

Note, this latter example is
covered in more detail in the

discussion on FeatureAttrib-
utes but the short explanation
is that sometimes it is imprac-
tical to report every single
instance of a feature and so it
is more efficient to count of
the number of executions
over an app run as an alterna-
tive.

App monitoring is deactivated
with the TeardownAttribute.
It flushes the cache of any
queued data and other “house
keeping” functions. Here are
some tips to consider:

 Cover all exit points.

 Configure an Extend-
edKeySource to collect any

AS A GENERAL

PRINCIPLE , IT IS

A GOOD

PRACTICE TO

AVOID SENDING

UNNECESSARY

MESSAGES.

PAGE 2 PREEMPTIVE ANALYTICS DEVELOPMENT T IPS AND RECOMMENDATIONS

in games, UI events that trig-
ger frequently, etc.).

This prevents excessive data
collection and unnecessary
application performance pen-
alties.

 Try to collect data in re-
sponse to specific user ac-

Message volume should be
kept to a reasonable level
commensurate with the per-
formance, bandwidth and
costs associated with the ap-
plication and platform.

 Avoid putting attributes on
frequently executed methods
(e.g. update/draw methods

tions, occasionally occurring
events, or exceptional situa-
tions.

 For heavily used features
that must be measured, con-
sider the techniques outlined
in “OPTIMIZING MESSAGE
VOLUME.”

MINIMIZING MESSAGE VOLUME
1

1 Please refer to the appropriate product documentation for additional information on all referenced at-

tributes and software features.

PREEMPTIVE SOLUTIONS © 2011

It is a good practice to avoid
sending unnecessary messag-
es. The following techniques
have proven effective in scal-
ing analytics with adoption.

 Do not use FeatureAttrib-
utes to track a feature (or
method) that is executed in
high volumes. An alternative
is to create a counter that is
incremented each time the
feature is used. The counter
value can be sent as Extend-
edKey data on the Teardown-
Attribute. You will still
know how many times the

feature has been used while
minimizing bandwidth and
processing power utilization.
One potential issue arises
when the TeardownAttribute
does not occur for a session.
If this is a concern, you can
add the same count to a Fea-
tureAttribute that you expect
to happen only occasionally
and then zero out the counter
each time it’s reported.

 Configure an Extend-
edKeySource to prevent re-
dundancy between similar
features. For example, you

may have an application with
50 pages the user can visit.
Instead of having 50 features
named “Overview Page,”
“About Us Page,” “Contact
Page,” etc., you can create
just one feature called “Page
Viewed” with associated cus-
tom data where the Key is
always “Page Name” and the
Value is the name of the cur-
rent page. This would also
work for tracking shopping
cart progress and other simi-
lar tasks.

These may be on the same or
different methods.

OPTIMIZING MESSAGE VOLUME

EXCEPTION MONITORING

the application). This is use-
ful if you have an entry point
method to a large feature that
should, in theory, not cause
exceptions. Adding a method
-level unhandled Exception-
TrackAttribute to that meth-
od will report cases when
exceptions leave that method.

Caught – track exceptions
that are caught by “catch”
blocks. These can be added
to individual methods or the
assembly (which is equivalent
to adding it to each individual
method).

Thrown – track exceptions
that are thrown by “throw”
instructions. These can be
added to individual methods
or the assembly (which is
equivalent to adding it to each
individual method).

 Configure a Report-
InfoSourceElement to surface
an exception report opt-in

(and option to provide con-
tact and context info) to the
user. If your app runs on the
desktop or on Silverlight in
the browser, then you can use
the DefaultAction Report-
InfoSourceElement which
will show a default opt-in
dialog with contact and con-
text info input boxes. If you
use the DefaultAction Re-
portInfoSourceElement, then
you can specify a PrivacyPoli-
cyUri that is surfaced as a link
in the default opt-in dialog.

 Configure an Extend-
edKeySource to collect any
custom data to be reported
once per exception incident.
For example, you might col-
lect information about the
environment that may be
volatile during application
execution to find a trend be-
tween user environments
where the exceptions are hap-
pening.

Exception monitoring often
requires special consideration
in that this is where develop-
ment and operations often
first overlap. These are, by
their very definition, event
driven. The following tech-
niques will help to separate
meaning full events from the
rest of the noise.

 Identify what type of ex-
ceptions that should be
tracked. There are four main
categories of exceptions:

Assembly-level Unhandled
– track exceptions that propa-
gate out of the user code and
crash the application. This is
a great starting point because
most everyone wants to know
about exceptions that crash
their application.

Method-level Unhandled –
tracks exceptions that leave
the target method (regardless
of whether it goes on to crash

FOR HEAVILY

USED FEATURES

THAT MUST BE

MEASURED ,

CONSIDER THE

TECHNIQUES

OUTLINED IN

“OPTIMIZING

MESSAGE

VOLUME.”

PAGE 3 DECEMBER 15, 2011

PREEMPTIVE SOLUTIONS © 2011

SYSTEM AND PERFORMANCE PROFILING

I NTERESTED IN LEARNING
MORE?

CONTACT US AT

+1 440 -443 -7200

OR EMAIL
SOLUTIONS@ PREEMPTIVE . COM

In addition to usage monitor-
ing and application events,
it’s also often useful to track
system and runtime stacks
and resource utilization. The
following techniques help to
ensure efficient system and
performance monitoring.

 To track the cost of a spe-
cific process or algorithm
that in terms of memory or
CPU usage, use the Perfor-

manceProbeAttribute. Use a
PerformanceProbeAttribute
once at the beginning of the
process (be sure to specify a
descriptive Name that indi-
cates it’s at the beginning of
the process) and another
PerformanceProbeAttribute
at the end of the process
(with a similarly descriptive
name). These can be on the
same or different methods –
use the InjectionPoint of

Beginning/End to specify at
what point in the method to
take measurements.

 Use PerformancePro-
beAttributes infrequently as
it requires time to gather the
appropriate information.

 Similarly, use the Sys-
temProfileAttribute infre-
quently as it also requires
time to gather the appropri-
ate information.

CUSTOM DATA: EXTENDED KEYS

Often, to best understand
application impact and quali-
ty, it is helpful to be able to
collect and analyze custom
data unique to an application,
a user, a particular session or
system. While PreEmptive
Analytics can handle most
every type of data, the fol-
lowing provides an overview
of some restrictions and rec-
ommendations.

There are some reasonable
data limitations.

 Keys must be ≤ 2000
Unicode characters

 Values must be ≤ 4000
Unicode characters

 Extended keys are re-
ported as either String
or Numeric values.

String valued extended keys
display every individual Val-
ue reported for the Key,

along with a % of total. This
makes it useful when there’s
a reasonably sized set of pos-
sible Values and you want to
see each Value and how
many times it appeared.

Numeric valued extended
keys display each Key only
once, with a count, average,
min, and max. This makes it
useful for numeric data on
which one would want these
types of metrics instead of a
full list of values.

 Only use ToString() on
objects if you are certain it
formats the data in a useful
way. You may need to write
utility methods to format the
data contained by specific
types of objects to make the
data visible and useful inside
the portal.

TO BEST UNDERSTAND

APPLICATION IMPACT AND

QUALITY , IT IS HELPFUL TO

BE ABLE TO COLLECT AND

ANALYZE CUSTOM DATA

UNIQUE TO AN

APPLICATION, A USER, A

PARTICULAR SESSION OR

SYSTEM.

PREEMPTIVE SOLUTIONS © 2011

