
Professional Edition &
Dotfuscator for Marketplace Apps

User's Guide
Version 4

© 2014 PreEmptive Solutions, LLC
All rights reserved.

Document Version 4.13
www.preemptive.com

TRADEMARKS

Dotfuscator, DashO, Overload-Induction, Runtime Intelligence, PreEmptive Analytics, PreEmptive Analytics for TFS, the
PreEmptive Solutions logo, the Dotfuscator logo, and the DashO logo are trademarks of PreEmptive Solutions, LLC

.NET™, MSIL™, Team Foundation Server™, and Visual Studio™ are trademarks of Microsoft, Inc.

Java is a trademark of Oracle, Inc.

All other trademarks are property of their respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT.

THIS PUBLICATION COULD CONTAIN TYPOGRAPHIC ERRORS AND/OR TECHNICAL INACCURACIES. UPDATES AND
MODIFICATIONS MAY BE MADE TO THIS DOCUMENT AND/OR SUPPORTING SOFTWARE AT ANY TIME.

PreEmptive Solutions, LLC has intellectual property rights relating to technology embodied in this product. In particular,
and without limitation, these intellectual property rights may include one or more U.S. patents or pending patent
applications in the U.S. and/or other countries.

This product is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product may be reproduced in any form by any means without prior written authorization of PreEmptive Solutions, LLC.

http://www.preemptive.com/

1 Table of Contents
1. Table of Contents 3-12

2. Dotfuscator 13

2.1. Introduction 13-14

2.1.1. Dotfuscator Editions 14-15

2.2. Getting Started 15

2.2.1. Registering and Activating Dotfuscator 15-17

2.2.2. Standalone GUI Quick Start 17-19

2.2.3. Command Line Quick Start 19-21

2.2.4. Visual Studio Integrated UI Quick Start 21-25

2.2.5. Observing and Understanding Obfuscated Output 25-28

2.3. Understanding Obfuscation with Dotfuscator 28-29

2.3.1. Protection Concepts 29

2.3.1.1. Renaming 29-30

2.3.1.2. Control Flow 30-31

2.3.1.3. String Encryption 31-32

2.3.1.4. Pruning 32

2.3.1.5. Tamper Detection and Defense 32

2.3.1.6. Shelf Life 32-33

2.3.1.7. Watermarking 33

2.3.2. Building and Debugging Obfuscated Applications 33

2.3.2.1. Linking 33-34

2.3.2.2. Incremental Obfuscation 34

2.3.2.3. Debugging Obfuscated Code 34-35

2.3.3. Advanced Topics 35

2.3.3.1. Smart Obfuscation 35-37

2.3.3.2. P/Invoke Methods 37

2.3.3.3. Managed C++ and IJW (It Just Works) Thunking 37

2.3.3.4. Dotfuscating Assemblies with Managed Resources 37

2.3.3.5. Dotfuscating Assemblies with Satellite DLLs 37

2.3.3.6. Dotfuscating Multi-module Assemblies 37-38

Dotfuscator User's Guide 3

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.3.3.7. Dotfuscating Strong Named Assemblies 38-39

2.3.3.8. Authenticode Signing Assemblies 39-40

2.3.3.9. Dotfuscating 64-Bit Assemblies 40

2.3.3.10. Reflection and Dynamic Class Loading 40-41

2.3.3.11. Declarative Obfuscation using Custom Attributes 41-43

2.3.3.12. Build Events 43-44

2.3.3.13. Friend Assemblies 44

2.3.3.14. Finding External Tools 44-45

2.4. Understanding Instrumentation with Dotfuscator 45-46

2.4.1. Instrumentation Injection 46-48

2.4.2. Exception Tracking 48

2.4.3. Tamper Notification 48-49

2.5. Configuring Dotfuscator via the GUI 49

2.5.1. The Standalone GUI 49-50

2.5.1.1. Working with Projects 50-52

2.5.1.2. Working with Inputs 52-55

2.5.1.2.1. Directory Inputs 55-56

2.5.1.2.2. Silverlight Inputs 56

2.5.1.2.3. ClickOnce Inputs 56-57

2.5.1.2.4. Windows Store Inputs 57-58

2.5.1.3. The Settings Tab 58-69

2.5.1.4. Configuring 69

2.5.1.5. Building the Project 69

2.5.1.5.1. The Output Tab 69-70

2.5.1.6. Viewing Project Files and Reports 70-71

2.5.1.7. Set User Preferences 71-72

2.5.1.8. The Help Menu 72

2.5.2. The Visual Studio Interface 72

2.5.2.1. Creating a Dotfuscator Project 73

2.5.2.2. Solution Explorer and the Dotfuscator Project Tree 73-74

2.5.2.3. Project Configurations 74-75

2.5.2.4. Deploying a Dotfuscator Project 75

Dotfuscator User's Guide 4

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.5.2.5. Working with Inputs 75-77

2.5.2.6. Project Properties 77-88

2.5.2.7. Input Assembly Properties 88-90

2.5.2.8. Input Package Properties 90

2.5.2.9. Configuring 90-91

2.5.2.10. Building the Project 91

2.5.2.11. The View Menu 91-92

2.5.2.12. The Help Menu 92

2.5.2.13. Set User Preferences 92-93

2.5.3. The Renaming Editor 93

2.5.3.1. The Rename Options Tab 93-94

2.5.3.1.1. Enhanced Overload-Induction Method Renaming 94-95

2.5.3.1.2. Class Renaming Options 95-97

2.5.3.1.3. XML Serialization and Renaming 97-98

2.5.3.1.4. Introduce Explicit Method Overrides When Renaming 98

2.5.3.2. The Rename Exclude Tab 98-99

2.5.3.2.1. Renaming Exclusions 99

2.5.3.3. The Rename Built-In Rules Tab 99-100

2.5.4. The Control Flow Editor 100

2.5.4.1. The Control Flow Options Tab 100-101

2.5.4.2. The Control Flow Exclude Tab 101-102

2.5.5. The String Encryption Editor 102

2.5.5.1. The String Encryption Include Tab 102

2.5.6. The Removal Editor 102-103

2.5.6.1. Understanding Include Triggers and Conditional Includes 103

2.5.6.2. The Include Triggers Tab 103-104

2.5.6.3. The Conditional Includes Tab 104-105

2.5.6.4. The Built-In Rules Tab 105

2.5.6.5. The Options Tab 105-106

2.5.6.5.1. Constant-Only Pruning 106

2.5.6.6. Removal Report 106

2.5.7. The Linking Editor 107

Dotfuscator User's Guide 5

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.5.7.1. Input Assemblies and Linked Assemblies 107-108

2.5.7.1.1. Prime Assemblies 108

2.5.7.1.2. Name Mangling 108

2.5.7.2. Setting Entry Points 108-109

2.5.7.2.1. Entry Points 109-110

2.5.8. The PreMark Editor 110-111

2.5.8.1. Watermark String Length 111

2.5.8.2. Character Maps 111-112

2.5.8.3. Extracting a Watermark 112

2.5.9. The Rules Editing Interface 112-113

2.5.9.1. Selecting Individual Elements 113-116

2.5.9.2. Creating Custom Rules 116-117

2.5.9.2.1. Selecting By Namespace 117

2.5.9.2.2. Selecting By Type 117-119

2.5.9.2.3. Selecting By Method 119-120

2.5.9.2.4. Selecting By Field 120-121

2.5.9.2.5. Selecting By Property 121-122

2.5.9.2.6. Selecting By Event 122-123

2.5.9.2.7. Selecting By Custom Attribute 123-124

2.5.9.2.8. Selecting By Supertype 124-125

2.5.9.3. Editing and Deleting Rules 125

2.5.9.4. Using Declarative Obfuscation with Rules 125-126

2.5.9.5. Previewing Rules 126-127

2.5.10. Instrumentation (Tamper, Shelf Life, Exception, Analytics) 127-129

2.5.10.1. Shelf Life Token Overview 129-130

2.5.10.1.1. Shelf Life Activation Key Overview 130

2.5.10.1.2. Expiration and Warning Actions 130-132

2.5.10.1.3. Expiration and Warning Reporting 132-133

2.5.10.1.4. Generate New Shelf Life Token 133-134

2.5.10.2. Tamper Notification 134-135

2.5.10.2.1. Tamper Reporting 135

2.5.10.2.2. Tamper Actions 135-136

Dotfuscator User's Guide 6

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.5.10.2.3. Simulating Tampering 136-137

2.5.10.3. Exception Tracking 137

2.5.10.3.1. Exception Reporting 137

2.5.10.3.2. Exception Actions 137-138

2.5.10.3.3. Collecting User-specified Exception Report Information 138-141

2.5.10.4. PreEmptive Analytics 141-142

2.5.10.4.1. Configuring and Running Dotfuscator with Application Analytics 142-145

2.5.10.4.2. PreEmptive Analytics Custom Attributes 145

2.5.10.4.2.1. Assembly Level Attributes 145-146

2.5.10.4.2.2. Entry Point Attributes 146-149

2.5.10.4.2.3. Exit Point Attributes 149-150

2.5.10.4.2.4. Tamper Notification Attributes 150

2.5.10.4.2.5. Shelf Life and Sign of Life Attributes 150-151

2.5.10.4.2.6. Exception Tracking Attributes 151

2.5.10.4.2.7. Feature Usage Attributes 151-153

2.5.10.4.2.8. Performance Attributes 153

2.5.10.4.2.9. Environment Attributes 153-154

2.5.10.4.2.10. Sending User Defined Data with Extended Keys 154-155

2.5.10.4.2.11. Automatically Sending Method Parameters as Extended Keys 155-156

2.5.10.4.3. Testing and Debugging Applications with Application Analytics 156

2.5.10.4.3.1. Configuring Message Tracing 156-157

2.5.10.4.3.2. Watching Messages 157

2.5.10.4.3.3. Downloading Message Data 157

2.5.10.4.4. Example PreEmptive Analytics Enabled Application 157-164

2.5.11. Decoding Obfuscated Stack Traces 164-166

2.5.12. Using Lucidator 166-168

2.5.13. Customer Feedback Options 168-169

2.6. References 169

2.6.1. Command Line Interface Reference 169-170

2.6.1.1. Command Line Option Summary 170-173

2.6.1.2. Supplementing or Overriding a Configuration File from the Command Line 173-177

2.6.1.3. Saving a Configuration File from the Command Line 177-178

Dotfuscator User's Guide 7

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.6.1.4. Launching the Graphical User Interface from the Command Line 178-179

2.6.2. MSBuild Task Reference 179

2.6.2.1. Dotfuscate Task 179-180

2.6.2.2. PreMark Task 180-181

2.6.3. Configuration File Reference 181

2.6.3.1. Version 181

2.6.3.2. Property List and Properties 181-183

2.6.3.3. Global Section 183

2.6.3.3.1. Library Global Option 183

2.6.3.3.2. Verbose, Quiet, and Investigate Global Options 183-184

2.6.3.3.3. SuppressIldasmAttribute Global Option 184

2.6.3.3.4. Debug Global Option 184-185

2.6.3.3.5. NoDotfuscatorAttribute Global Option 185

2.6.3.4. Input Assembly List 185-186

2.6.3.4.1. Library Mode By Assembly 186-187

2.6.3.4.2. Declarative Obfuscation By Assembly 187

2.6.3.4.3. Instrumentation Processing By Assembly 188

2.6.3.4.4. Transform XAML By Assembly 188

2.6.3.5. User Defined Assembly Load Path 188-189

2.6.3.6. Output Directory 189

2.6.3.7. Temp Directory 189

2.6.3.8. Obfuscation Attribute Feature Map 189-190

2.6.3.9. Renaming Section 190

2.6.3.9.1. Renaming Scheme 190-191

2.6.3.9.2. Renaming Options 191-193

2.6.3.9.3. Renaming Exclusion List 193

2.6.3.9.4. Renaming Referenced Rules 193

2.6.3.9.5. Output Mapping File 193-194

2.6.3.9.6. HTML Renaming Report 194

2.6.3.9.7. Input Mapping File 194-195

2.6.3.10. Control Flow Obfuscation Section 195

2.6.3.10.1. Control Flow Obfuscation Level 195

Dotfuscator User's Guide 8

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.6.3.10.2. Control Flow Obfuscation Options 195-196

2.6.3.10.3. Control Flow Exclusion List 196

2.6.3.11. String Encryption Section 196

2.6.3.11.1. String Encryption Options 196

2.6.3.11.2. String Encryption Inclusion List 196-197

2.6.3.12. Removal Section (i.e. Pruning) 197

2.6.3.12.1. Disable Removal Option 197

2.6.3.12.2. ConstOnly Option 197-198

2.6.3.12.3. Removal Trigger List 198

2.6.3.12.4. Conditional Includes List 198-199

2.6.3.12.5. Removal Referenced Rules 199

2.6.3.12.6. Removal Report 199-200

2.6.3.13. Linking Section 200

2.6.3.13.1. Disable Linking Option 200

2.6.3.13.2. Linked Assemblies 200-202

2.6.3.14. PreMark Section 202

2.6.3.14.1. PreMark Options 202-203

2.6.3.14.2. PreMark Elements 203-204

2.6.3.15. Signing Section 204-205

2.6.3.16. Digital Signing Section 205-206

2.6.3.17. EventList Section 206-208

2.6.3.18. PreEmptive Analytics Section 208-209

2.6.3.19. Extended Attributes Section 209-210

2.6.3.20. SmartObfuscation Section 210-211

2.6.3.21. A Note about XML Configuration Files 211

2.6.3.22. Custom Rules Reference 211-212

2.6.3.22.1. Exclusion Rules 212

2.6.3.22.1.1. Excluding Namespaces 212

2.6.3.22.1.2. Excluding Types 212-214

2.6.3.22.1.3. Excluding Methods 214-215

2.6.3.22.1.4. Excluding Fields 215-216

2.6.3.22.1.5. Excluding Properties 216

Dotfuscator User's Guide 9

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.6.3.22.1.6. Excluding Events 217

2.6.3.22.1.7. Excluding By Custom Attribute 217-218

2.6.3.22.1.8. Excluding By Supertype 218

2.6.3.22.1.9. Excluding Assemblies 219

2.6.3.22.1.10. Excluding Modules 219

2.6.3.22.2. Inclusion Rules 219-220

2.6.3.22.2.1. Including Namespaces 220

2.6.3.22.2.2. Including Types 220-221

2.6.3.22.2.3. Including Methods 221-222

2.6.3.22.2.4. Including Fields 222-223

2.6.3.22.2.5. Including Properties 223-224

2.6.3.22.2.6. Including Events 224

2.6.3.22.2.7. Including By Custom Attribute 224-225

2.6.3.22.2.8. Including By Supertype 225-226

2.6.3.22.2.9. Including Assemblies 226

2.6.3.22.2.10. Including Modules 226

2.6.3.23. dotfuscator_v2.3.dtd 226-227

2.6.4. Custom Attribute Reference 227

2.6.4.1. PreEmptive.Attributes 227

2.6.4.1.1. ApplicationAttribute 227-228

2.6.4.1.2. BinaryAttribute 228-229

2.6.4.1.3. BusinessAttribute 229

2.6.4.1.4. ExceptionTrackAttribute 230-235

2.6.4.1.4.1. ExceptionTypes 235-236

2.6.4.1.5. FeatureAttribute 236-240

2.6.4.1.5.1. FeatureEventTypes 240

2.6.4.1.6. InsertShelfLifeAttribute 240-246

2.6.4.1.7. InsertSignofLifeAttribute 246-247

2.6.4.1.8. InsertTamperCheckAttribute 247-252

2.6.4.1.9. PerformanceProbeAttribute 252-253

2.6.4.1.9.1. InjectionPoints 253-254

2.6.4.1.10. SetupAttribute 254-260

Dotfuscator User's Guide 10

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.6.4.1.11. SinkElements 260-261

2.6.4.1.12. SourceElements 261-262

2.6.4.1.13. SystemProfileAttribute 262-263

2.6.4.1.14. TeardownAttribute 263-264

2.6.5. The Map File 264-265

2.6.5.1. dotfuscatorMap_v1.1.dtd 265

2.6.6. Advanced Topics 265

2.6.6.1. Side by Side Installs 265-266

2.6.6.2. Concurrent Builds 266

2.7. Samples 266

2.7.1. Reflection Sample 266

2.7.1.1. Reflection Sample Files 266-267

2.7.1.2. Building the Reflection Sample 267

2.7.1.3. Running the Reflection Sample 267-268

2.7.1.4. Dotfuscating the Reflection Output 268-269

2.7.1.5. Configuring the Reflection Sample with the Graphical User Interface 269-271

2.7.1.6. Summary of the Reflection Sample 271

2.7.2. Serialization Sample 271

2.7.2.1. Serialization Sample Files 271

2.7.2.2. Building the Serialization Sample 271-272

2.7.2.3. Running the Serialization Sample 272

2.7.2.4. Dotfuscating the Serialization Output 272-273

2.7.2.5. Configuring the Serialization Sample with the Graphical User Interface 273-276

2.7.2.6. Summary of the Serialization Sample 276

2.7.3. Remoting Sample 276

2.7.3.1. Remoting Sample Files 276-277

2.7.3.2. Building the Remoting Sample 277

2.7.3.3. Running the Remoting Sample 277-278

2.7.3.4. Dotfuscating the Remoting Output 278-280

2.7.3.5. Configuring the Remoting Sample with the Graphical User Interface 280-281

2.7.3.6. Summary of the Remoting Sample 281

2.7.4. ASP.NET Sample 281

Dotfuscator User's Guide 11

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.7.4.1. ASP.NET Sample Files 281-282

2.7.4.2. Preparing the ASP.NET Sample 282

2.7.4.3. Building the ASP.NET Sample 282

2.7.4.4. Running the ASP.NET Sample 282-283

2.7.4.5. Examining the ASP.NET Sample Code 283-284

2.7.4.6. Dotfuscating the ASP.NET Output 284-285

2.7.4.7. Configuring the ASP.NET Sample with the Graphical User Interface 285-286

2.7.4.8. Summary of the ASP.NET Sample 286

3. Index 287-331

Dotfuscator User's Guide 12

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.1 Introduction
Why Obfuscate?

Programs written for .NET are easy to reverse engineer. .NET applications compile to a high-level, expressive file syntax
called MSIL (Microsoft Intermediate Language) that contains method and variable names and can be easily decompiled
back into source form.

Attackers can use freely available decompilers to easily see the source of any .NET application, exposing software licensing
code, copy protection mechanisms, and proprietary business logic - whether it's legal or not. Anyone can peruse the
details of a software application for security flaws to exploit, unique ideas to steal, features to crack, or worse.

This is not the only option, though. Obfuscation is a technique that provides seamless renaming of symbols in assemblies
as well as other tricks to foil decompilers. Properly applied obfuscation increases protection against decompilation by
orders of magnitude, while leaving the application intact.

When an obfuscator tool goes to work on readable program instructions, a side effect is the output will confuse a human
interpreter and break the decompiler the human interpreter was using. While the executable logic is preserved, the
reverse semantics are rendered non-deterministic. As a result, attempts to reverse-engineer the instructions fail because
the translation is ambiguous. Deep obfuscation creates a myriad of decompilation possibilities, some of which produce
incorrect logic if recompiled. The decompiler, as a computing machine, has no way of knowing which of the possibilities
could be recompiled with valid semantics. Humans write and employ decompilers to automate decompilation algorithms
that are too challenging for the mind to follow. It is safe to say that any obfuscator that confuses a decompiler poses even
more deterrence to a human attempting the same undertaking.

Post-build Obfuscation

It is important to understand that Dotfuscator is a "post-build" tool - it works by modifying already-compiled application
assemblies. The development environment and tools do not change to accommodate obfuscation, and source code is
never altered, or even read, in any way. Obfuscated binaries are functionally equivalent to traditional binaries and will
execute on the Common Language Runtime (CLR) with identical results. (The reverse, however, is not true. Even if it were
possible to decompile strongly obfuscated MSIL, it would have significant semantic disparities when compared to the
original source code.)

The following illustration shows the flow of the Dotfuscation process:

Dotfuscator User's Guide 13

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

That means you follow all your normal processes to develop and build your application, and then once you have compiled
binaries you configure Dotfuscator to work with them, and run Dotfuscator's build process against them. Dotfuscator will
take the binaries as input, perform the obfuscation per your configuration settings, and generate the same set of binaries
as output - but those binaries will be obfuscated.

Most often, the process of developing and obfuscating an application looks like this:

1. Follow normal development and QA procedures for most of the project lifecycle
2. Somewhere past the half-way point but well before release, use the Dotfuscator UI (in Visual Studio or on its

own) to configure Dotfuscator to work with your application, using basic smoke testing to ensure that the
obfuscation hasn't caused obvious issues with the application

3. Integrate Dotfuscator into your build process, using our Visual Studio integration, MSBuild task, or straight
command-line calls

4. Use the obfuscated build in QA for the remainder of the project

2.1.1 Dotfuscator Editions
Professional

Dotfuscator Professional Edition is the most capable, most powerful version of Dotfuscator. It is designed for
organizations that produce commercial and enterprise applications. Dotfuscator Professional Edition provides superior
protection to foil decompilation, advanced size reduction to conserve memory and improve load times, deep Visual
Studio integration for seamless configuration, incremental obfuscation to release patches, watermarking to uniquely tag
assemblies, and phone and technical support.

Community Edition

Dotfuscator Community Edition is a free version included with Visual Studio that offers basic obfuscation. Its main purpose
is to rename identifiers, discouraging reverse engineering. Dotfuscator Community Edition incorporates advanced
technologies to facilitate this protection and achieve some size reduction due to renaming to trivial identifiers.

Dotfuscator Community Edition does not:

Dotfuscator User's Guide 14

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Dotfuscate managed code meant to run inside Microsoft SQL Server.
Integrate deeply or operate separately from Visual Studio.
Support Managed C++ applications.
Support ClickOnce, APPX, or XAP packaging

See http://www.preemptive.com/products/dotfuscator/compare-editions for additional differences.

If you need to go beyond these limitations, contact PreEmptive Solutions for more information about Dotfuscator
Professional Edition.

This guide does not cover Dotfuscator Community Edition. Please see the guide included with that version for
additional information.

Dotfuscator for Marketplace Apps

Dotfuscator for Marketplace Apps includes most of the features available in Dotfuscator Professional Edition, but only for
applications targeting Windows Phone 7 or 8, and/or Windows RT via the Windows Store. and is intended to supercede
Dotfuscator for Windows Phone Edition. If support for other application types is required, contact our sales department to
inquire about Dotfuscator Professional Edition.

If a feature behaves differently in Dotfuscator for Marketplace Apps than in Dotfuscator Professional Edition, it will be
flagged with a icon.

2.2 Getting Started
This section shows you how to get started using Dotfuscator for obfuscation. It starts with registering the software, then
reviews the three standard ways to use Dotfuscator (GUI, command line, Visual Studio), then works through examining the
obfuscated assemblies.

2.2.1 Registering and Activating Dotfuscator
The first time you use Dotfuscator you will be prompted to register, which is a two-step process. In the first step, you fill
out the registration form; Dotfuscator will then send this information to the registration server via or via the web,
depending on your choices. Upon successful receipt, the server will generate a serial number and confirmation code. This
information will be sent back to you, using the address that you provided.

After this step is completed, the next time you run Dotfuscator, you will be prompted for your serial number and
confirmation code. Once you enter this information and it is validated, registration is complete.

If you purchased a subscription license (as opposed to a perpetual license) of Dotfuscator, then after registration
Dotfuscator will attempt to download your registration and subscription information from PreEmptive's servers. If your
subscription has expired, you will be prompted to renew your subscription. If the servers cannot be contacted you will be
prompted to provide your activation token, which was supplied to you by your vendor.

Dotfuscator User's Guide 15

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

http://www.preemptive.com/products/dotfuscator/compare-editions
http://www.preemptive.com/contact-us.html

Graphical Offline Activation

When using Dotfuscator's graphical user interface, if PreEmptive's subscription servers cannot be contacted and you have
not activated your subscription or your subscription has expired, you will be prompted to provide your activation token in
the offline activation dialog.

If you select Cancel from the Activation Dialog Dotfuscator will load in reduced functionality mode. In this mode, you will
only be able to access the Activation Dialog. You can do this by selecting Help > Activate Dotfuscator.

Dotfuscator will also load in reduced functionality mode if your subscription has expired and you have not renewed it.
Dotfuscator's status bar will alert you to the status of your subscription. Additionally, the Activation Dialog and
Dotfuscator's status bar contain links to purchase or renew your subscription.

Upon purchasing or renewing your subscription, you may simply re-launch Dotfuscator and it will attempt to download
your updated subscription information from PreEmptive's servers, and Dotfuscator will once again operate in full
functionality mode. You will only need to use the Activation Dialog if PreEmptive's servers cannot be contacted.

Command Line Offline Activation

When using Dotfuscator's command line interface, if PreEmptive's subscription servers cannot be contacted and you have
not activated your subscription or your subscription has expired, Dotfuscator will exit with a message informing you how
to provide your activation token via the /offlineactivation command line option.

Dotfuscator User's Guide 16

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Upon purchasing or renewing your subscription, you may simply re-launch Dotfuscator and it will attempt to download
your updated subscription information from PreEmptive's servers. You will only need to use the /offlineactivation
command line option if PreEmptive's servers cannot be contacted.

2.2.2 Standalone GUI Quick Start
This section shows you how to use Dotfuscator's standalone GUI. For a complete guide to Dotfuscator's User Interface, see
Graphical User Interface Reference.

Step 1 – Create a Default Project

Launch Dotfuscator from the Windows Start menu.
Select Create New Project and click OK. The Dotfuscator main project window displays with the Input tab selected.
Select the assembly you would like to obfuscate:

Click Browse.
Browse to:

Path

C:\Program Files (x86)\PreEmptive Solutions\Dotfuscator Professional Edition
4.x\samples\cs\GettingStarted\bin\Debug

and select GettingStarted.exe.
Click Open.

The path to the executable populates the list box under Input Files.
Select File > Save Project to save the project.
In the Save Project dialog, navigate to:

Path

C:\Program Files (x86)\PreEmptive Solutions\Dotfuscator Professional Edition
4.x\samples\cs\GettingStarted\

In the File Name field, enter Dotfuscator.xml and click Save.

Step 2 – Build the Project

Click on the Settings tab and select Build Settings. The Destination Directory field is populated by default as:
${configdir}\Dotfuscated.

Note: ${configdir} is a variable that holds the path to your Dotfuscator configuration file.

The project is ready to be obfuscated. Click the Build button on the toolbar. Wait a few moments as Dotfuscator builds
an obfuscated version of the HelloWorld application. The obfuscated assembly is now stored in:

Path

Dotfuscator User's Guide 17

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

C:\Program Files (x86)\PreEmptive Solutions\Dotfuscator Professional Edition
4.x\cs\GettingStarted\Dotfuscated

You can now go to the Output tab and browse the obfuscated symbols, or look at the renaming map file (map.xml) that
Dotfuscator created in the output directory. Or, run the obfuscated application if you wish.

Next, with a little more configuration, we can use some of Dotfuscator's more powerful features.

Step 3 – Configure the Project

Click the Settings tab and select Global Options.
In the General section, set the Build Progress property to Verbose. This causes Dotfuscator to provide additional
information about its progress during execution at the bottom of the build tab.
In the Advanced section, Set the Emit Debugging Symbols to JIT Optimization; Sequence Points from PDB. Setting this
property tells Dotfuscator to create a symbol file in PDB format for each output assembly. Debuggers can use these
files to provide useful information in a debugging session. Typically, they contain information such as line numbers,
source file names, and local variable names. The PDB files are placed in the output directory with the output
assemblies.
In the Feature section, Set the values for Disable Renaming, Disable Control Flow, Disable String Encryption, and
Disable Removal to No. You have fine grained control over which transforms Dotfuscator will apply to your
assemblies; these are the features we will configure and use in the next steps.

Still on the Settings tab, select Reports > Renaming. Check the Output as HTML checkbox to get a useful report
containing renaming information and statistics on your application. This report will output into the same directory as
the map file. The default location is ${configdir}\Dotfuscated\Map.html.
Click the Rename tab, then Options sub tab. Check Use Enhanced Overload Induction. This feature allows up to 15%
more redundancy in method and field renames. Since overloading on method return type or field type is typically not
allowed in source languages (including C# and VB), this further hinders decompilers.
Click the String Encryption tab. String encryption is inclusion based, therefore you must mark the assembly's checkbox
at the root of the tree shown in the left pane to include all methods in the input assembly. String Encryption scrambles
the strings in your application. For example, someone looking to bypass your registration and verification process can
search for the string where your program asks the user for a serial number. When they find the string, they locate
instructions near it and alter the logic. String Encryption makes this difficult to do, because their search will come up
empty.

Step 4 – Rebuild the Project

Click Build; the project is ready to be re-obfuscated. As before, the obfuscated assembly is stored in:

Path

C:\Program Files (x86)\PreEmptive Solutions\Dotfuscator Professional Edition
4.x\samples\cs\GettingStarted\dotfuscated

Dotfuscator User's Guide 18

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Step 5 – Browse the Output

Click the Output tab. Now, you can navigate a tree that shows how Dotfuscator obfuscated your code.
Expand the root tree and all sub-trees. Notice the blue diamond shaped icons. These are the renamed methods and
fields. The parents of each of these icons display their original names. Dotfuscator has renamed each method and field
to make it almost impossible to decipher the purpose of each method. This severely impacts the process of reverse
engineering the code.

Notice the currently highlighted SaySomething and set_Name methods, as well as the Name property. Dotfuscator
determined these items are not used in this application. As a result, Dotfuscator's Pruning feature is able to remove
them, resulting in a more compact application.

Next Steps

Now that you have successfully obfuscated using the GUI, you can see how to use the command line interface to do the
same things. Or you can examine the obfuscated output assembly in detail and see how effective the obfuscation was.

2.2.3 Command Line Quick Start

Dotfuscator User's Guide 19

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

This section demonstrates how to use the command line interface to obfuscate using the same settings as in the
Standalone GUI Quick Start. For a complete guide to Dotfuscator's command line, see Command Line Interface
Reference.

You can start Dotfuscator from the command line using the following syntax:

Command Line Quick Start

dotfuscator [options] [configfile]

The command line options are documented in the Command Line Options Summary. The configuration file is an XML
document that specifies various options for Dotfuscator. When you ran the standalone GUI and filled in the various
dialogs, you were populating a configuration file. All elements of the configuration file are documented in the
Configuration File Reference.

Using Existing Configurations

You can feed previously created configuration files into the command line tool. For example, using the configuration file
that you created in the last section, you can obfuscate from the command line using this command:

Using Existing Configurations

dotfuscator Dotfuscator.xml

Using Command Line Switches Only

Alternatively, you can Dotfuscate on the command line without a configuration file because most of the configuration
options are available as command line switches. To get powerful obfuscation for our example assembly, all you need to
do is specify your input assembly.

Using Command Line Switches Only

dotfuscator /in:GettingStarted.exe

The in switch lets you specify a list of input assemblies separated by commas.
By default, the output assembly is placed in a subdirectory of the working directory called Dotfuscated. You can
override this with the out command line switch.
By default, renaming is enabled and the renaming map file is called map.xml. It is also placed in the Dotfuscated
subdirectory. You can override this with the mapout switch.
By default, string encryption, control flow, and removal are turned on.

Using Advanced Command Line Switches

If you want to run the obfuscator from the command line with the same options that you set in the standalone GUI in the
previous section, you need a command like this:

Using Advanced Command Line Switches

Dotfuscator User's Guide 20

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

dotfuscator /in:GettingStarted.exe /debug:on /v /enha:on

The in option is as before.
The v option runs Dotfuscator in verbose mode.
The debug option tells Dotfuscator to generate the debugging symbols for the obfuscated output assemblies.
The enha option turns on Enhanced Overload Induction.

2.2.4 Visual Studio Integrated UI Quick Start
This section shows you how to use Dotfuscator from within Visual Studio. You can then include obfuscation as part of a
Visual Studio solution build. A Dotfuscator project can accept input files from one or more other Visual Studio Projects
(such as C# or VB.NET projects), or you can specify assemblies directly from a file browse dialog.

For a detailed guide to Dotfuscator's Visual Studio integration, see Using the Visual Studio Integrated User Interface under
the Graphical User Interface Reference.

Additionally, an online demonstration is available at www.preemptive.com/demos.html.

 The Dotfuscator interface within Visual Studio is unavailable in Dotfuscator for Marketplace Apps.

Step 1 – Open the GettingStarted Solution with Visual Studio

Within Visual Studio, click on Open Solution, and browse to:

Getting Started

C:\Program Files (x86)\PreEmptive Solutions\Dotfuscator Professional Edition
4.x\samples\cs\GettingStarted\GettingStarted.sln

The solution and project files are in Visual Studio 7.0 format. If you are using a later version of Visual Studio, you will be
asked if it is OK for Visual Studio to upgrade the files. You should agree to the upgrade before continuing.
The GettingStarted project displays in Solution Explorer. This is a C# project that you can use to build the
GettingStarted executable.

Dotfuscator User's Guide 21

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

http://www.preemptive.com/demos.html

Step 2 – Create a Dotfuscator Project

Click on Add New Project from Visual Studio's File menu.
In the Add New Project Dialog, click on Dotfuscator Projects. Click on the Dotfuscator Project icon and name the
project GetDotfuscated. Click OK to create the project.
A new Dotfuscator project called GetDotfuscated displays in the Solution Explorer. Use the Solution Explorer as the
starting point for configuring Dotfuscator projects.
To specify the input file, tell Dotfuscator to use the output from the GettingStarted project. Right click on the top level
GetDotfuscated node and select Add Project Output from the context menu. This brings up the Add Project Output
dialog.
On the Add Project Output dialog, select the GettingStarted project from the project drop down, then select Primary
Output from the output groups list. Click OK.
Under the Dotfuscator project's Input Assemblies node within Solution Explorer, you should now see
GettingStarted.exe from GettingStarted (Active).

Step 3 – Build the Solution

Right click on the GetDotfuscated project node in Solution Explorer and select Properties from the context menu. This
brings up the property pages for your Dotfuscator project. Click on the Configuration Properties > Build
Settings properties in the left navigation tree. The Output Directory is populated by default as:
${configdir}\Dotfuscated.

Note: ${configdir} is a variable that holds the path to your Dotfuscator configuration file.

If you have installed the samples to the default location, the obfuscated assembly will be written to:

Building the Solution

C:\Program Files (x86)\PreEmptive Solutions\Dotfuscator Professional Edition
4.x\samples\cs\GettingStarted\GetDotfuscated\Debug\Dotfuscated

The solution is ready to be built. Select Build Solution from the Build menu. The C# project builds first, then the
Dotfuscator project. Dotfuscator's output displays in Visual Studio's output window.

Within Solution Explorer, you can bring up Dotfuscator's Output Browser by double clicking the Output node in the
GetDotfuscated project. Here you can see the original and new names that Dotfuscator applied.

Next, with a little more configuration, we can use some of Dotfuscator's more powerful features.

Dotfuscator User's Guide 22

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Step 4 – Configure the Project Properties

Right click on the GetDotfuscated project node in Solution Explorer and select Properties from the context menu.
Select Configuration Properties > Global Options from the left tree. This brings up the property sheet for your
Dotfuscator project’s global options.

In the Feature section, set the values for Disable Renaming, Disable Control Flow, Disable String Encryption, and
Disable Removal to No. You have fine grained control over which transforms Dotfuscator will apply to your
assemblies; these are the features we will configure and use in the next steps.
In the General section, Set the Build Progress property to Verbose. This causes Dotfuscator to provide additional
information in the Visual Studio output window during builds.
In the Advanced section, set the Emit Debug Symbols property to JIT Optimization; Sequence Points from PDB (this is
the default for Debug project configurations). Setting this option tells Dotfuscator to create a symbol file in PDB
format for each output assembly. Debuggers use these files to provide useful information in a debugging session.
Typically, they contain information such as line numbers, source file names, and local variable names. The PDB files
are placed in the output directory with the output assemblies.

Select Configuration Properties > Reports > Renaming. Check the Output as HTML checkbox to get a useful report
containing renaming information and statistics on your application. This report will output into the same directory as
the map file. The default location is ${configdir}\Dotfuscated\Map.html.
Select Configuration Properties > Reports > Removal. In the Removal Report File editor, specify
${configdir}\Dotfuscated\removal.xml for the Removal Report File. Also, check Output as HTML to get a
formatted report containing the removal information and statistics on your applications. This report outputs into the
same directory as the removal.xml file.

Step 5 – Configure Obfuscation Settings

In Solution Explorer, expand the Configuration Options folder in the Dotfuscator Project. Here you will see a node for
each configurable obfuscation setting. A node is grayed out if the feature is disabled. To enable or disable a feature,
you can either right click on its node and check or uncheck the disabled menu item, or you can set it using the Global
Properties sheet as described in step 4. In this section, we are going to use renaming, control flow obfuscation, string
encryption, and removal.
Double click the Renaming node and click the Options sub tab. Check Use Enhanced Overload Induction. This feature
allows up to 15% more redundancy in method and field renames. Since overloading on method return type or field
type is typically not allowed in source languages (including C# and VB), this further hinders decompilers.
Check Output as HTML to get a useful report containing renaming information and statistics on your application. This
report outputs into the same directory as the map file. The default location is
${configdir}\Dotfuscated\Map.html.
Double click the String Encryption node. String encryption is inclusion-based, therefore, you must mark the assembly's
checkbox at the root of the tree shown in the left pane to include all methods in the input assembly. String Encryption
scrambles the strings in your application. For example, someone attempting to bypass your registration and verification
process can search for the string where your program asks the user for a serial number. When they find the string, they
can locate instructions near it and alter the logic. String Encryption makes this difficult to do, because their search will
come up empty.

Dotfuscator User's Guide 23

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Step 6 – Rebuild the Solution

Build the solution again. As before, the obfuscated assembly is stored in:

Rebuild the Solution

C:\Program Files (x86)\PreEmptive Solutions\Dotfuscator Professional Edition
4.x\samples\cs\GettingStarted\GetDotfuscated\Debug\Dotfuscated

Step 7 – Browse the Output

Double click the Output node in the Dotfuscator project. You can now navigate a tree that shows how Dotfuscator
obfuscated your code.
Expand the root tree and all sub-trees. Notice the blue diamond shaped icons. These are the renamed methods and
fields. The parents of each of these icons display their original names. Dotfuscator renamed each method and field to
make it almost impossible to decipher the purpose of each method. This severely impacts the process of reverse
engineering the code.

Notice the currently highlighted SaySomething and set_Name methods, as well as the Name property. Dotfuscator
determined these items are not used in this application. As a result, Dotfuscator's Pruning feature removes them,
resulting in a more compact application.

Dotfuscator User's Guide 24

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Step 8 – Browse the Reports

Select the GetDotfuscated Project node in Solution Explorer and then click View > Dotfuscator in the menubar. There
are three menu items here that are enabled whenever there are HTML versions of the map and removal reports
available for viewing. Clicking on them displays the reports in your default browser.

Next Steps

Now that you have successfully obfuscated an application inside of Visual Studio, you can use the command line interface
to do the same things. Or you can examine the obfuscated output assembly in detail and see how effective the
obfuscation was.

To continue learning about Dotfuscator's Visual Studio integration, see Using the Visual Studio Integrated User Interface.

2.2.5 Observing and Understanding Obfuscated Output
Step 1 – Using a Disassembler

The .NET Framework SDK ships with a disassembler utility called ildasm that allows you to decompile .NET assemblies into
IL Assembly Language statements. To start ildasm , make sure that the .NET Framework SDK is installed and in your path.
Type ildasm on the command line.

Note: If this does not work and Visual Studio is installed, then ildasm is not in your path. To open a Visual Studio
command prompt, click start > Visual Studio [version] > Visual Studio Tools > Visual Studio [version]
Command Prompt. Type ildasm.

Click File > Open and browse to:

Path

C:\Program Files (x86)\PreEmptive Solutions\Dotfuscator Professional Edition
4.x\samples\GettingStarted\bin\Debug

and select GettingStarted.exe.
Click Open. A view of the disassembled assembly displays:

Dotfuscator User's Guide 25

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

To compare the currently shown, un-obfuscated HelloWorld application to the obfuscated version, start another copy of
ildasm. This time browse to

Path

C:\Program Files (x86)\PreEmptive Solutions\Dotfuscator Professional Edition
4.x\samples\GettingStarted\Dotfuscated.

and select GettingStarted.exe.
Click Open.

Dotfuscator User's Guide 26

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Place each ildasm window side-by-side. Compare and contrast both figures.
Notice the un-obfuscated disassembly contains names of methods that are fairly understandable. For example, it is safe
to assume that the ConverseButton_Click: void (object, class [mscorlib]System.EventArgs)
method is called when the Converse button is clicked. Now look at the obfuscated version. Which method is called
when the converse button is clicked? It is hard to tell. Also notice the missing SaySomething method. It was removed
because the method wasn't being used anywhere in the code.

Dotfuscator User's Guide 27

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Double-click the methods SayHello:string() from the original assembly and a:string() from the obfuscated
assembly. These two methods are the same; however, when examining the disassembled IL code further, notice that the
strings have been encrypted in the obfuscated version to make the code difficult to read. For example, locate the
following line in the un-obfuscated version:

Un-Encrypted String:

IL_0000: ldstr "Hello, my name is "

Now view the obfuscated version, and try to find the above string. If you’re having trouble finding it, it’s because it’s
encrypted and looks like the following:

Encrypted String:

IL_0000: ldstr bytearray (09 42 26 44 29 46 2B 48 26 4A 67 4C 6D 4E 22 50
 28 52 73 54 3B 56 36 58 34 5A 3E 5C 7D 5E 36 60
 12 62 43 64)

You can imagine how confusing this can be for attackers who are trying to reverse-engineer the code, especially with
more complex applications.

Step 2 –Decompiling

If you're thinking your source code is accessible only to a small circle of technical folks who actually know IL Assembly
Language, think again. You can take this a step further and actually recreate the source code from our application by
using a decompiler such as Reflector. These utilities can decompile a .NET assembly directly back to a high level language
like C#, VB .NET, or Managed C++.

In this section we use Reflector for .NET, from http://www.red-gate.com/products/reflector/.

Running .NET Reflector against the Dotfuscated GettingStarted.exe file and trying to examine a method such as
a()displays the following:

Run .NET Reflector Against GettingStarted.exe

This item appears to be obfuscated and can not be translated.

Thus, Dotfuscator successfully prevented a major decompiler from reverse engineering your Dotfuscated code.

2.3 Understanding Obfuscation with Dotfuscator
Dotfuscator provides a multi-part approach to application protection. Each of those parts provides an important piece of
an overall protection strategy - if one part is compromised, the other parts continue to provide effective protection,
making it harder and harder for an attacker to accomplish their goal. And not only are there multiple parts, but each part
has advanced features that go beyond the simple techniques used by other obfuscation products.

The first part is Obfuscation, which sub-divides into:

Dotfuscator User's Guide 28

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

http://www.red-gate.com/products/reflector/

Renaming
Control Flow
String Encryption

The remaining parts strengthen overall application protection, beyond obfuscation:

Pruning
Tamper Detection and Defense
Shelf Life
Watermarking

Dotfuscator also provides features that help you build, deploy, and debug obfuscated assemblies. These include:

Linking
Incremental Obfuscation
Debugging Obfuscated Code

Finally, there are a number of additional concepts that apply to projects that use individual language features or target
specific assemblies. You can read more about these under Advanced Topics.

2.3.1 Protection Concepts

2.3.1.1 Renaming
Dotfuscator is capable of renaming all classes, methods, and fields to short (space-saving) names. In addition to making
decompiled output much more difficult to understand, it also makes the resulting executable smaller in size.

Most commercial obfuscators employ a renaming technique that applies trivial identifiers that can be as short as a single
character. As the obfuscator processes the code, it selects the next available trivial identifier for substitution. This
seemingly simple renaming scheme has a key attribute: it cannot be reversed. While the program logic is preserved, the
names become nonsense, hampering all attempts to understanding the code.

Dotfuscator uses a deeper form of obfuscation, developed for Dotfuscator and patented by PreEmptive Solutions, called
Overload Induction™. Instead of substituting one new name for each old name, Overload Induction renames as many
methods as possible to the same name. After this deep obfuscation, the logic, while not destroyed, is beyond
comprehension. The following simple example illustrates the power of the Overload Induction technique:

Original Source Code Before Obfuscation

Dotfuscator User's Guide 29

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

private void CalcPayroll(SpecialList employeeGroup) {
 while (employeeGroup.HasMore()) {
 employee = employeeGroup.GetNext(true);
 employee.UpdateSalary();
 DistributeCheck(employee);
 }
}

Reverse-Engineered Source Code After Overload Induction Dotfuscation

private void a(a b) {
 while (b.a()) {
 a = b.a(true);
 a.a();
 a(a);
 }
}

The example shows that the code is obfuscated and compacted, a positive side effect of renaming. For example, if a name
is 20 characters long, renaming it to a() reduces its size by 95%. Renaming also saves space by conserving string heap
entries. Renaming everything to "a" means that a is stored only once, and each method or field renamed to a can point to
it. Overload Induction enhances this effect because the shortest identifiers are continually reused.

Many customers report a full third of all methods being renamed to "a()".

There are several distinct advantages to this methodology:

Renaming makes decompiled output difficult to understand. Renaming to unprintable characters or illegal names in the
target source language is futile since decompilers are equipped to re-rename such identifiers. Considering that
Overload-Induction could make one of three method names "a()", understanding decompiled output is difficult.
Overload-Induction has no limitations that do not exist in all renaming systems (such limitations are discussed later).
Since overload-induction tends to use the same letter more often, it reaches into longer length names more slowly (e.g.
aa, aaa, etc.). This also saves space.

Overload-Induction’s patented algorithm determines all possible renaming collisions and only induces method
overloading when it is safe to do so. The procedure is provably irreversible. In other words, it is impossible (even via
running Overload-Induction again) to reconstruct the original method name relationships.

Dotfuscator also provides Advanced Overload-Induction™ by allowing a method’s return type or a field's type to be
used as a criterion in determining method or field uniqueness. This feature can allow up to 15% more redundancy in
method and field renames. In addition, since overloading on method return type or field type is typically not allowed in
source languages (including C# and VB), this further hinders decompilers.

2.3.1.2 Control Flow

Dotfuscator User's Guide 30

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Traditional control flow obfuscation introduces false conditional statements and other misleading constructs in order to
confuse and break decompilers. This process synthesizes branching, conditional, and iterative constructs that produce
valid forward (executable) logic, but yield non-deterministic semantic results when decompilation is attempted. Control
Flow obfuscation produces spaghetti logic that can be very difficult for a cracker to analyze.

Dotfuscator employs advanced control flow obfuscation. In addition to adding code constructs, Dotfuscator works by
destroying the code patterns that decompilers use to recreate source code. The end result is code that is semantically
equivalent to the original but contains no clues as to how the code was originally written. Even if highly advanced
decompilers are developed, their output will be guesswork.

Consider the following example:

Original Source Code Before Obfuscation © 2001, Microsoft Corporation (Snippet from WordCount.cs C# example
code)

public int CompareTo(Object o) {
 int n = occurrences – ((WordOccurrence)o).occurrences;
 if (n == 0) {
 n = String.Compare(word, ((WordOccurrence)o).word);
 }
 return(n);
}

Reverse-Engineered Source Code After Control Flow Obfuscation By Dotfuscator

public virtual int _a(Object A_0) {
 int local0;
 int local1;
 local0 = this.a – (c) A_0.a;
 if (local0 != 0) goto i0;
 goto i1;
 while (true) {
 return local1;
 i0: local1 = local0;
 }
 i1: local0 = System.String.Compare(this.b, (c) A_0.b);
 goto i0;
}

2.3.1.3 String Encryption
Dotfuscator allows you to hide user strings that are present in your assembly. A common attacker technique is to locate
critical code sections by looking for string references inside the binary. For example, if your application is time locked, it
may display a message when the timeout expires. Attackers search for this message inside the disassembled or
decompiled output and chances are, when they find it, they will be very close to your sensitive time lock algorithm.

Dotfuscator User's Guide 31

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Dotfuscator addresses this problem by allowing you to encrypt strings in these sensitive parts of your application,
providing an effective barrier against this type of attack.

Since string encryption incurs a slight runtime penalty no string encryption is performed except on the parts of the
application that you specify.

2.3.1.4 Pruning
Smaller applications download faster, install faster, load faster and run faster. Dotfuscator's pruning feature statically
analyzes your code to find the unused types, methods, and fields, and removes them. Dotfuscator also removes debug
information and non-essential metadata from a MSIL file as it processes it, making the application smaller and reducing
the data available to an attacker.

The static analysis works by traversing your code, starting at a set of methods called “triggers," or entry points. In general,
any method that you expect external applications to call must be defined as a trigger. For example, in a simple standalone
application, the Main method would be defined as a trigger. An assembly can have more than one trigger defined for it.

Note that turning on library mode for an assembly causes Dotfuscator to treat all visible
types and members as entry points, automatically.

As Dotfuscator traverses each trigger method’s code, it notes which fields, methods, and types are being used. It then
analyses all the called methods in a similar manner. The process continues until all called methods have been analyzed.
Upon completion, Dotfuscator is able to determine a minimum set of types and their members necessary for the
application to run. Only these types are included in the output assembly.

Dotfuscator generates a removal report in XML format that lists all input assemblies and how each was pruned. Each
assembly listing has a listing of types and their members (methods, fields, properties, etc.) along with an attribute
indicating whether the item was pruned or not. The report also describes how managed resources attached to each
assembly were pruned. At the end, the report provides a statistics section regarding the overall effectiveness of pruning.

2.3.1.5 Tamper Detection and Defense
Dotfuscator injects code that verifies your application’s integrity at runtime. If it detects tampering, it can shut down the
application, invoke random crashes (to disguise that the crash was the result of a tamper check), or perform any other
custom action. A tamper message can be sent to a PreEmptive Analytics endpoint, including PreEmptive Analytics
Runtime Intelligence Service, to indicate that tampering was detected.

2.3.1.6 Shelf Life

Dotfuscator User's Guide 32

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Shelf Life is an application inventory management function that allows you to embed expiration, or de-activation, and
notification logic into an application. Dotfuscator injects code that reacts to application expiration by exiting the
application and/or sending a PreEmptive Analytics message. This feature is particularly helpful with beta applications.
Users can schedule an application’s expiration/de-activation for a specific date and optionally issue warnings to users that
the application will expire/de-activate in a specific number of days.

 Shelf Life is unavailable in Dotfuscator for Marketplace Apps.

If you wish to provide the option of extending the shelf life, you may do so by writing code to provide updated expiration
information to the shelf life engine by specifying a Shelf Life Token Source (e.g. an external configuration file). This
provides a mechanism to extend warning and expiration dates without requiring re-instrumentation and redistribution of
binaries.

Users must first obtain a Shelf Life Activation Key (SLAK) to use the Shelf Life feature. The key is issued by PreEmptive and
provided to Dotfuscator by the user during shelf life configuration.

Supported .NET Application Types

Dotfuscator can perform Shelf Life Notification processing for all .NET assemblies except for the following:

Managed C++ input assemblies containing native and managed code.
Multi-module input assemblies.
Silverlight assemblies.
Windows Phone assemblies.
WinRT assemblies.

2.3.1.7 Watermarking
Watermarking helps track unauthorized copies of your software back to the source by embedding data such as copyright
information or unique identification numbers into a.NET application without impacting its runtime behavior. Dotfuscator’s
watermarking algorithm does not increase the size of your application, nor does it introduce extra metadata that could
break your application.

2.3.2 Building and Debugging Obfuscated Applications

2.3.2.1 Linking
Dotfuscator can combine multiple input assemblies into one or more output assemblies. Assembly linking can be used to
make your application even smaller, especially when used with renaming and pruning, and can simplify deployment
scenarios.

Dotfuscator User's Guide 33

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

For example, if you have input assemblies A, B, C, D, and E, you can link assemblies A, B, and C and name the result F. At
the same time, you can also link D and E and name the result G. The only rule is that you can't link the same input
assembly into multiple output assemblies.

The linking feature is fully integrated with the rest of Dotfuscator, so in one step, you can obfuscate, remove unused types,
methods, and fields, and link the result into one assembly.

If you have other input assemblies that reference the assemblies you are linking together, Dotfuscator will transparently
update all the assembly and type references so the output assemblies will correctly work together.

Linking is not supported for Managed C++ assemblies.

2.3.2.2 Incremental Obfuscation
Incremental obfuscation allows you to keep a consistent naming scheme across Dotfuscator runs for your application. By
referencing a name mapping file, types and members can be consistently renamed over time. Consistent renaming is
desirable in multiple scenarios, including the redistribution of a subset of files that constitute a dependant group, and
sequential obfuscation of assemblies in a resource constrained environment. Appropriate utilization of this feature offers
the additional benefit of more rapid obfuscation, when only some of the assemblies in a project need to be redistributed.

Consider a scenario where you have used Dotfuscator on your application and distributed that application to your
customers. Now you would like to make changes to one of the assemblies and provide it as an update. A naive re-
execution of Dotfuscator upon your application would likely rename your legacy classes and methods in a different way,
forcing you to redistribute the entire application to your customers. Dotfuscator’s incremental obfuscation allows you to
keep the same names so you can release the changed assembly.

Incremental obfuscation is useful in sequential build scenarios by allowing the obfuscation of large projects to be broken
down into smaller, more manageable groups of assemblies. A hypothetical project consisting of three files, A.exe, B.dll,
and C.dll where A references B, and B references C could be built as follows: C.dll could be obfuscated initially, then
B.dll could be incrementally obfuscated using the map file from C.dll, and finally A.exe could be obfuscated using
the map file from B.dll.

Incremental obfuscation requires an input mapping file containing the names that need to be reused. The format is the
same as the output mapping file that Dotfuscator produces after every run. A best practice is to save a copy of the output
mapping file in a safe place (e.g. in version control) for every released build of your application. The file can then be used
as an input mapping file if an incremental update should ever be necessary.

When performing a run using incremental obfuscation, Dotfuscator must have access to all the application’s assemblies,
although it is not required that all the assemblies be included in the project. They only need to be discoverable by the
same probing rules used by Dotfuscator to locate referenced assemblies.

2.3.2.3 Debugging Obfuscated Code

Dotfuscator User's Guide 34

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

One major drawback of obfuscation is that the task of maintaining and troubleshooting an obfuscated application
becomes more difficult. In a well obfuscated application, the names of all types, methods, and fields are changed from
their carefully thought out, informative names into meaningless names. This makes using a debugger more difficult,
and impacts the usefulness of stack traces sent in from the field.

To solve the debugging problem, Dotfuscator has the ability to output debugging symbol files for obfuscated application
that correspond as closely as possible to the original symbol files output by the compiler. Using these files, developers can
use a debugger to step through an obfuscated assembly and view the original source code.

To solve the stack trace problem, PreEmptive Solutions provides Lucidator, a standalone tool that translates and decodes
stack traces emitted by programs obfuscated with Dotfuscator. Lucidator works by automatically decoding obfuscated
stack traces using the renaming map file. Given the obfuscated stack trace, Lucidator replaces the obfuscated names with
the original names and displays the results. This same translation ability is built into the Dotfuscator GUI, as well.

Lucidator does not need to be run on the same machine on which Dotfuscator is installed, as long as it has access to the
appropriate map file.

2.3.3 Advanced Topics

2.3.3.1 Smart Obfuscation
Smart Obfuscation is an ongoing effort to identify and apply obfuscation rules automatically for known API usage patterns
and application types.

The current implementation recognizes applications and libraries that use some common technologies and patterns, such
as:

Windows Presentation Foundation (Beginning with 4.7.1000 these exclusions are disabled if the Transform XAML option
is enabled for the Assembly)
Windows Communication Foundation
Windows Workflow
Windows Cardspace
Data-bound Windows Forms controls
Enumerated type values used as strings
Late calls in VB applications
Custom Serialization
Web Services
Silverlight (Beginning with 4.8.1000 these exclusions are disabled if the Transform XAML option is enabled for the
Assembly)

For these application types, Dotfuscator’s renamer and pruner can make a best effort to identify cases where renaming or
removing elements will break the output application. It then automatically prevents renaming or removal without
additional user configuration.

Dotfuscator User's Guide 35

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The Smart Obfuscation rules use static analysis to determine what elements should be excluded from renaming or used as
removal entry points. When such an item is discovered, the rule issues a notification that displays in the Smart Obfuscation
tab. Sometimes a rule can recognize that an action needs to be taken, but cannot determine what specific action to take
because static analysis does not yield enough information. When this happens, the rule issues a warning that displays in
the Smart Obfuscation tab.

Dotfuscator allows you to turn Smart Obfuscation off. Smart Obfuscation is turned on by default, and in most cases should
be left on. It can be turned off in cases where the user believes that more aggressive obfuscation will not hurt the
application. There are several ways to turn it off:

Changing the <option> setting in the <smartobfuscation> section to disable.
From the Project Properties dialog in the Visual Studio UI.
From the Settings Tab in the standalone UI.

Dotfuscator allows you to control the verbosity of Smart Obfuscation reporting. You can choose to report all actions and
warnings, warnings only, or suppress reporting altogether. There are several ways to set the reporting level:

Setting the verbosity attribute on the smartobfuscationreport element in the configuration file.
From the Project Properties dialog in the Visual Studio UI.
From the Settings Tab in the standalone UI.

Dotfuscator allows you to save the Smart Obfuscation report to a file in addition to displaying it. You may instruct
Dotfuscator to save the report to a file by specifying a file path in any of the following places:

A file element within the smartobfuscationreport element in the configuration file.
From the Project Properties dialog in the Visual Studio UI.
From the Settings Tab in the standalone UI.

Dotfuscator automatically renames an existing smart obfuscation report with the same name before overwriting it with a
new version. If you do not want this behavior, there are several ways to instruct Dotfuscator not to rename existing
removal reports before overwriting:

Setting the overwrite attribute on the smartobfuscationreport element in the configuration file to true.
From the Project Properties dialog in the Visual Studio UI.
From the Settings Tab in the standalone UI.

Smart Obfuscation Report

Dotfuscator generates a Smart Obfuscation report in XML format that lists all items flagged by the Smart Obfuscation
process. Keep in mind that the contents of the report reflect the Smart Obfuscation reporting verbosity setting - if the
verbosity is set to Warnings Only or None, items flagged by Smart Obfuscation may be omitted from the report. Each
entry represents one item that was flagged by Smart Obfuscation, and has a description of what the item was and why it
was excluded, along with an attribute indicating whether the flag action was a warning or a notification.

The elements of the Smart Obfuscation report are similar to those in the map file and removal report. A few things are
noteworthy:

Dotfuscator User's Guide 36

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The report includes the name of the rule that flagged the item, the identity of the item, the action taken, and the reason
for that action.
The identity of the flagged item is specified by the type of item (type, method, field, property, etc.) and its full signature.
In type names, nested class names are separated from the parent using the “/” character.
Constructors are named .ctor, while static constructors (a.k.a. static initializers, class constructors, etc) are named
.cctor.

2.3.3.2 P/Invoke Methods
P/Invoke methods (i.e. native platform methods) are automatically not renamed if Dotfuscator detects that the name is
used to find the corresponding native function. P/Invoke methods that are mapped to native functions by an alias or by
ordinal can be renamed.

2.3.3.3 Managed C++ and IJW (It Just Works) Thunking
Dotfuscator can process assemblies containing managed and unmanaged (native) code, such as those created by the
Managed C++ compiler. Dotfuscator performs renaming and metadata removal on mixed code modules; however, string
encryption, control flow obfuscation, and pruning are automatically disabled. These features are still enabled on other
"pure managed" input modules included in the run.

2.3.3.4 Dotfuscating Assemblies with Managed Resources
Managed resources may be embedded inside a module (internal) or may be in files external to the module. Often, part of
the name of the managed resource is a type name (see the .NET Framework documentation for more information about
the “hub and spoke model” for lookup of managed resources.).

When the type name is renamed, Dotfuscator attempts to locate and rename the corresponding managed resource. If the
resource is internal to the assembly, this is automatic. If the resource is embedded inside an external file, then the file
must be in the same directory as the referencing module. If the resource is embedded inside another assembly, then that
assembly must be one of the input assemblies.

2.3.3.5 Dotfuscating Assemblies with Satellite DLLs
Localized applications can be seamlessly obfuscated along with their satellite resource DLLs. Dotfuscator automatically
discovers these DLLs using the same rules that the runtime uses and automatically adds them as inputs to the obfuscation
process. You do not need to explicitly specify them as inputs.

Your localized resources contained in the satellite DLLs will be renamed in synch with your culture neutral resources in the
main assembly.

Dotfuscator User's Guide 37

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.3.3.6 Dotfuscating Multi-module Assemblies
A .NET assembly may be made up of multiple modules (i.e. files on disk). Usually an assembly is made up of one module,
and this is the scenario that most tools, such as Visual Studio, support. Occasionally it is desirable to create assemblies
made up of more than one module. Dotfuscator supports this scenario. Note that Dotfuscating a multi-module assembly
is not the same as Dotfuscating multiple input assemblies.

To Dotfuscate a multi-module assembly, only the prime module needs to be listed as an input assembly. The non-prime
modules are searched for in the same directory as the prime module.

In the prime module’s assembly manifest, Dotfuscator automatically updates the hash values of the other modules.

2.3.3.7 Dotfuscating Strong Named Assemblies
Strong named assemblies are digitally signed. This allows the runtime to determine if an assembly has been altered after
signing. The signature is an SHA1 hash signed with the private key of an RSA public/private key pair. Both the signature
and the public key are embedded in the assembly’s metadata.

Since Dotfuscator modifies the assembly, it is essential that signing occur after running the assembly through Dotfuscator.

Dotfuscator handles this step as part of the obfuscation process.

Automatically Re-signing after Obfuscation

Dotfuscator automatically re-signs strongly named assemblies after obfuscation, eliminating the need for manual steps
after obfuscation. Dotfuscator both re-signs your already signed assemblies, and completes the signing process on delay
signed assemblies.

Re-signing Strongly Named Assemblies

As part of the build process, Dotfuscator re-signs assemblies that are already strongly named. You can tell Dotfuscator
explicitly where to find the public/private key pair, or you can rely on a location specified by custom attributes on the
input assembly (e.g. System.Reflection.AssemblyKeyFileAttribute).

The following example shows an XML configuration file fragment that sets up resigning with an explicit key file. Any key
file specified via custom attribute is not used.

Re-signing with Explicit Key File

Dotfuscator User's Guide 38

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

 <signing>
 <resign>
 <option>dontuseattributes</option>
 <key>
 <file dir="c:\temp" name="key.snk" />
 </key>
 </resign>
 ...
 </signing>

Finishing Signing Delay Signed Assemblies

If an input assembly is delay signed, Dotfuscator can finish the signing process. Tell Dotfuscator where to locate the
private key required to complete the signing.

The following example shows an XML configuration file fragment that sets up delay signing with an explicit key file.

Delay Signing

<signing>
 ...
 <delaysign>
 <key>
 <file dir="c:\temp" name="key.snk" />
 </key>
 </delaysign>
</signing>

2.3.3.8 Authenticode Signing Assemblies
Authenticode signed assemblies are digitally signed by a code signing certificate issued by a trusted root certificate
authority. This allows the operating system and runtime to determine the publisher of an application and to determine if
the assembly has been altered after being signed. The signature is a hash encrypted with the private key of a code signing
certificate. Both the signature and the public key are embedded in the assembly’s metadata.

Since Dotfuscator modifies the assembly, it is essential that Authenticode signing occur after running the assembly
through Dotfuscator.

Dotfuscator handles this step as part of the obfuscation process.

Automatic Authenticode Signing after Obfuscation

As part of the build process, Dotfuscator performs Authenticode signing of output assemblies. You must tell Dotfuscator
explicitly where to find the code signing certificate store as a PFX container and optionally the password for the container.

Dotfuscator User's Guide 39

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Dotfuscator provides the ability for you to specify the URL of an Authenticode timestamp service when performing
Authenticode signing. This URL will be accessed during Dotfuscator's signing process, and will provide additional
data which will allow your assemblies' Authenticode signatures to remain valid after your code-signing certificate has
expired.

The following example shows an XML configuration file fragment that performs Authenticode signing.

Authenticode Digital Signing

 <digitalsigning>
 <pfx password="secret123">
 <file dir="C:\test" name="authenticode.pfx" />
 </pfx>
 </digitalsigning>

2.3.3.9 Dotfuscating 64-Bit Assemblies
Dotfuscator can transparently obfuscate managed assemblies written explicitly for specific CPU architectures, including
64-bit architectures.

Dotfuscator itself is a managed application and can run on 32-bit and 64-bit versions of Windows.

2.3.3.10 Reflection and Dynamic Class Loading
Reflection and dynamic class loading are extremely powerful tools in the .NET architecture. This level of runtime program
customization prevents Dotfuscator from infallibly determining whether it is safe to rename all types loaded into a given
program.

Consider the following (C#) code fragment:

C# Code Fragment:

public object GetNewType() {
 Type type = Type.GetType(GetUserInputString(), true);
 object newInstance = Activator.CreateInstance(type);
 return newInstance;
}

This code loads a type by name and dynamically instantiates it. In addition, the name is coming from a string input by the
user!

There is no way for Dotfuscator to predict which type names the user will enter. The solution is to configure Dotfuscator to
exclude the names of all potentially loadable types. Note that method and field renaming can still be performed. This is
where manual user configuration plays an important role.

Often the situation is less serious. Consider a slight variation:

Dotfuscator User's Guide 40

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

C# Code Fragment Variation:

public MyInterface GetNewType() {
 Type type = Type.GetType(GetUserInputString(), true);
 object newInstance = Activator.CreateInstance(type);
 return newInstance as MyInterface;
}

Now it is immediately obvious that only a subset of types need to be excluded: those implementing MyInterface.

2.3.3.11 Declarative Obfuscation using Custom Attributes
The .NET Framework provides two custom attributes designed to make it easy to automatically obfuscate assemblies
without having to set up configuration files. This section outlines how you can use these attributes with Dotfuscator. It is
assumed that you are familiar with custom attributes and how to apply them in your development language.

If you are using an earlier version of the .NET Framework, Dotfuscator ships with a DLL containing compatible attributes.
To use these, add the PreEmptive.ObfuscationAttributes.dll as a reference when building your project. When
referencing the compatible attributes in your source code, replace the System.Reflection namespace with
PreEmptive.Dotfuscator.ObfuscationAttributes.

System.Reflection.ObfuscateAssemblyAttribute

This attribute is used at the assembly level to tell Dotfuscator how to obfuscate the assembly as a whole. Setting the
AssemblyIsPrivate property to false tells Dotfuscator to run the assembly in library mode. If you set it to true, Dotfuscator
will not run the assembly in library mode and will rename as much as possible, including public types and members.

System.Reflection.ObfuscationAttribute

This attribute is used on types and their members and tells Dotfuscator how to obfuscate the item.

Feature Property

This string property has a default value of "all". This property is provided so that you can configure multiple obfuscation
transforms independently by tagging an item with multiple ObfuscationAttributes, each with a different feature
string.

Dotfuscator maps the "default" and "all" feature strings to "renaming".

Here is a list of other feature strings that Dotfuscator understands.

Feature String Action

renaming attribute configures renaming

controlflow attribute configures control flow obfuscation.

Dotfuscator User's Guide 41

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

stringencryption attribute configures string encryption

trigger attribute configures pruning by marking the annotated item as an entry point

conditionalinclude attribute configures pruning by conditionally including the annotated item

If necessary, you can map other feature strings to renaming using the Feature Map Strings property sheet on the Setup
Tab.

Dotfuscator ignores attributes with feature strings that it does not understand.

Exclude Property

This Boolean property has a default value of True. When True, it indicates that the tagged item should be excluded from
the transforms implied by the Feature property. When False, it indicates that the tagged item should be included.

The current version of Dotfuscator supports one value of the Exclude property for any given transform. Dotfuscator will
ignore rules that have unsupported Exclude values. The following list summarizes.

Feature String Supported Exclude Value

renaming True

controlflow True

stringencryption False

trigger False

conditionalinclude False

ApplyToMembers Property

This Boolean property has a default value of True. When the attribute is applied to an assembly or a type, a True value
indicates that the operation should be applied to all the members, including nested types, of selected types. If false, the
operation is applied to types only and not their members or nested types.

Enabling or Disabling Declarative Obfuscation

Dotfuscator allows you to switch Declarative Obfuscation on or off for all input assemblies. If not enabled, Dotfuscator
ignores obfuscation related custom attributes. You can also switch it off for specific assemblies.

Stripping Declarative Obfuscation Attributes

Dotfuscator can strip out the obfuscation attributes when processing is complete, so output assemblies will not contain
clues about how it was obfuscated. Both of the declarative obfuscation attributes include a Boolean
"StripAfterObfuscation" property whose default value is true

Dotfuscator also has configuration settings that interact with the value of the StripAfterObfuscation property at
obfuscation time.

Dotfuscator User's Guide 42

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The settings that effect declarative obfuscation attribute stripping and how they interact are summarized in the below
table.

Dotfuscator is
Honoring Attributes

Dotfuscator is
Stripping Attributes

Attribute's
StripAfterObfuscation
Property

Result

Yes Yes True or False Strip Attribute

Yes No True Strip Attribute

Yes No False Keep Attribute

No Yes True or False Strip Attribute

No No True or False Keep Attribute

Using Feature Map Strings

Dotfuscator allows you to map values contained in an Obfuscation Attribute's Feature property to feature strings that
Dotfuscator understands.

For example, you can annotate your application with obfuscation attributes that reference a feature called "testmode".
Dotfuscator, by default, does not understand this feature string; therefore it ignores the attributes. Later, if you want
Dotfuscator to use these attributes to configure renaming and controlflow obfuscation, then map the feature string
"testmode" to Dotfuscator's built in "renaming" and "controlflow" strings.

2.3.3.12 Build Events
Dotfuscator allows you to specify programs that run before and after its build sequence.

Pre Build Event

In its build process, Dotfuscator executes the program specified by the pre build event before it does anything else with
your input assemblies.

Post Build Event

Dotfuscator executes the program specified by the post build event at the very end of its build process. You can tell
Dotfuscator to execute the program only when the build succeeds, only when the build fails, or all the time. In addition,
you can tell Dotfuscator to run the program once for each output module.

Build Event Properties

The Dotfuscator build engine exposes several properties that you can use when configuring build events:

Property Name Description

dotf.destination Path to the destination directory.

Dotfuscator User's Guide 43

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

dotf.inputmap.xml Full path and filename to the input map file if specified.

dotf.outputmap.xml Full path and filename to the output map file if specified.

dotf.removal.xml Full path and filename to the XML removal file if specified.

dotf.config.file Full path to the current configuration file.

dotf.current.out.module Full path to the current output module. Used in the post build event
when the program is called for each output module.

dotf.current.in.module Full path to the current input module. Used in the post build event when
the program is called for each output module.

You can also reference external properties (environment variables or properties passed on the command line using the -p
option) and user defined project properties in your build events.

2.3.3.13 Friend Assemblies
The .NET Framework has the concept of friend assemblies, where an assembly may declare that its internal type definitions
are visible to specified other assemblies. This is done using the
System.Runtime.CompilerServices.InternalsVisibleToAttribute. Dotfuscator detects the use of this
attribute and modifies its renaming and pruning rules as described below.

Assume A and B are two assemblies where assembly B references A, and A is marked with InternalsVisibleTo (B
).

There are a few cases of interest:

1. A and B are both input assemblies and Dotfuscator is in library mode. If A has no other external, non-input
assembly friends, Dotfuscator safely mangles internal names and fixes up the references in assembly B. If A does
have other external friends, then internal names are preserved.

2. A and B are both input assemblies and Dotfuscator is not in library mode. Internal names in A are, by default,
mangled and references in B are fixed up, regardless of the existence of other external friend assemblies. As usual
in Dotfuscator, names and groups of names can be preserved via manual configuration.

3. A is an input assembly, B is not, and Dotfuscator is in library mode. Internal names in A are not mangled in order to
not break potential references in B.

4. A is an input assembly, B is not, and Dotfuscator is not in library mode. Internal names are mangled, potential
references in B are not fixed up since it is not an input assembly. As usual in Dotfuscator, names and groups of
names can be preserved via manual configuration. This case would require manual configuration if B actually does
reference A’s internals.

2.3.3.14 Finding External Tools
Dotfuscator uses ildasm and ilasm to process the input assemblies. Ildasm is the MSIL disassembler that ships with the
.NET Framework SDK. Ilasm is the MSIL assembler that ships with the .NET Framework Redistributable.

Dotfuscator User's Guide 44

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

On systems with .NET 1.1 or below, Dotfuscator attempts to match each input assembly with the toolset that ships with
the version of the .NET Framework that it was compiled with. If Dotfuscator cannot find the version appropriate toolset for
an input assembly, it uses a later version if present. It never uses an older version.

On systems with .NET 2.0 and above, Dotfuscator will use the latest tools even for .NET 1.x assemblies. When building,
Dotfuscator passes the appropriate command line arguments to ilasm to ensure that the output assemblies target their
correct framework versions.

By default, Dotfuscator searches for these external tools using the following algorithm:

Determine the version of the .NET Framework that the input assembly was compiled on.
Look at user specified properties that override the default locations of the tools. You can do this in a tool and version
specific way. The following table summarizes by example:

Property Value

ILASM_v1.0.3705 C:\tools\ilasm.exe .NET v1.0.3705 assemblies will use this version
of ilasm.

ILDASM_v2.0.50215 C:\tools\ildasm.exe .NET v2.0.50215 assemblies will use this version
of ildasm.

ILDASM_v1.1 C:\tools\ildasm.exe .NET v1.1.xxxx assemblies will use this version of
ilasm.

Note: These properties are case sensitive.

Search the .NET Framework and .NET Framework SDK directories corresponding to the .NET Framework version
determined in step 1.
Search the .NET Framework and .NET Framework SDK directories corresponding to later versions of the .NET Framework
determined in the first step.

If Dotfuscator cannot find one or both of these programs, it issues an error.

Dotfuscator uses the strong naming tool (sn.exe) to automatically resign your strong named assemblies. This tool also
ships with the .NET Framework SDK and Dotfuscator searches for it in the same directory as ildasm.

2.4 Understanding Instrumentation with Dotfuscator
In addition to obfuscation, Dotfuscator also provides features that inject code into an application. Some of that code is
used to enhance the protection provided by obfuscation (i.e. Tamper Notification and Shelf Life), but Dotfuscator can also
inject code that sends messages back to you about how the application is used in production. This powerful capability
lets you deeply understand your application usage, which can help you make better decisions about your software
priorities.

This injected code is called Instrumentation, and is most-often used with one of the PreEmptive Analytics products:
Runtime Intelligence Service or PreEmptive Analytics for Team Foundation Server.

Dotfuscator User's Guide 45

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Runtime Intelligence Service

Runtime Intelligence Service is a hosted portal that gives application authors insight into how their applications are used.
Dotfuscator can inject the instrumentation code that will send data to the Runtime Intelligence Service. This includes:

Tamper Notification
Shelf Life
Exception Tracking and Application Analytics, as detailed below

Dotfuscator can instrument an application such that a message is sent when the application starts and stops, a feature is
used, or an exception occurs. The instrumentation can also send back data about the runtime platform, unique users and
installations, and performance of the application. The Runtime Intelligence Service aggregates this lifecycle data from the
application and exposes it through the Runtime Intelligence Portal, available to Runtime Intelligence Service subscribers.
To use this functionality, you must be a Runtime Intelligence Service subscriber.

PreEmptive Analytics for Team Foundation Server (TFS)

PreEmptive Analytics for Team Foundation Server aggregates and analyzes exceptions and automatically creates Visual
Studio / TFS work items based entirely upon rules and operational thresholds that you define. PreEmptive Analytics for
TFS is designed specifically to help streamline feedback driven development, improve software quality and user
experience, and increase development efficiency.

PreEmptive Analytics for TFS uses exception instrumentation. It does not require feature, platform, performance, etc.
instrumentation.

Supported .NET Application Types

Dotfuscator can inject Instrumentation code for all .NET assemblies except for the following:

Managed C++ input assemblies containing native and managed code.
Multi-module input assemblies.
Input assemblies that target .NET 1.0
WinRT (coming soon)

2.4.1 Instrumentation Injection
The development workflow for adding Application Analytics to an application is similar to obfuscating an assembly. Both
require configuring Dotfuscator to work with the specific assemblies, and both produce a set of output assemblies that
match the input assemblies. The only difference is the specific configuration elements that are used. The output
assemblies will contain all the run-time code necessary to collect and deliver the data.

The diagram below illustrates the workflow from the developer's point of view.

Dotfuscator User's Guide 46

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

PreEmptive Analytics Message Types

PreEmptive Analytics defines several message types:

Application and Session Start
Application and Session Stop
Feature
Performance Probe
System Profile
Tamper Detected
Exception Detected

Application and Session Start and Stop messages (the application lifecycle messages) are intended to be sent when an
application starts running and when it shuts down. The information contained in these messages is used to track
application behavior and basic usage patterns. Extended usage and environment information is obtained by using the
Feature, Performance Probe, or System Profile messages.

The data from these messages drive the Runtime Intelligence Portal’s dashboards. To have your application send these
messages, you must:

Be a Runtime Intelligence Service subscriber (this gives you access to the dashboards and data in the portal).
Configure your application with PreEmptive Analytics attributes, including Setup and Teardown. This can be done with
attributes in your source code, or by configuring the attributes through the Dotfuscator GUI.
Run your application through Dotfuscator with the Send Analytics Messages option turned on. See Configuring and
Running Dotfuscator with Application Analytics.

Dotfuscator User's Guide 47

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

See Example PreEmptive Analytics Enabled Application to see the contents of messages containing PreEmptive Analytics
data.

2.4.2 Exception Tracking
Exception Tracking is a method for automatically detecting and responding to exceptions in the target application as they
occur. Dotfuscator injects code that can detect caught, thrown, or unhandled exceptions. Once detected, the exception
tracking code can collect details from the user and report the detected exception to a PreEmptive Analytics endpoint. A
user can explicitly allow an exception report to be sent even if he or she has previously opted out of sending PreEmptive
Analytics messages, and can provide comment and contact information to be sent along with the report. In addition, the
developer can specify a custom action be taken when an exception is detected.

To facilitate the common use case of unhandled exception reporting, Dotfuscator can inject a pre-made Exception Report
Dialog which provides a consistent user experience for reporting exceptions. Minimal configuration is needed to instruct
Dotfuscator to track unhandled exceptions, display the exception report dialog which will obtain explicit user consent and
collect optional comment and contact information from the user, and send the report to the configured PreEmptive
Analytics endpoint.

2.4.3 Tamper Notification
Dotfuscator can instrument applications to detect if they have been tampered with and if so, optionally send a message to
a PreEmptive Analytics Endpoint.

Dotfuscator User's Guide 48

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

When run on a properly attributed .NET application, Dotfuscator processes the Tamper Notification attributes and
instruments the application accordingly. The resulting output application will be ready to send Tamper Notifications to a
PreEmptive Analytics Endpoint. The only differences between Tamper Notification and Application Analytics at this level
are in the attributes.

Supported .NET Application Types

Dotfuscator can perform Tamper processing for all .NET assemblies except for the following:

Managed C++ input assemblies containing native and managed code.
Multi-module input assemblies.
Input assemblies that target .NET 1.0.
.NET Compact Framework assemblies.
Silverlight assemblies.
Windows Phone assemblies.
WinRT assemblies.

2.5 Configuring Dotfuscator via the GUI
There are two user interfaces available with Dotfuscator:

A standalone GUI
A tightly-integrated set of components for Visual Studio

Both user interfaces allow you to configure all aspects of a dotfuscator project. The standalone GUI is generally preferable
for larger projects or projects with complex inputs and outputs. The Visual Studio GUI is generally preferable for smaller
projects that are typically built entirely within Visual Studio. Both user interfaces generate a Dotfuscator project file that is
compatible with the other user interface, and that can be integrated into automated build scripts.

The first two topics in this section describe the components of the two user interfaces that are different from each other,
while the remaining sections describe elements and features that are common to both.

2.5.1 The Standalone GUI
The Main Window

The main Dotfuscator window consists of four vertically arranged activity zones:

At the top, the familiar Windows Menu Bar
Below that menu, a toolbar appears for frequently accessed actions
Below the toolbar, a tabbed section appears that organizes the specification and command activities for the Project
At the bottom, a tabbed, scrollable console pane is provided for viewing output.

Dotfuscator User's Guide 49

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The Select Project Window

Start the user interface, without a project loaded, by invoking dotfuscator.exe from the installation directory, or by
clicking on the icon created by the installer. When the Select Project Type window displays you can either create a new
project, select an existing project from the most recently used list, or by selecting More... browse the file system for a
project.

2.5.1.1 Working with Projects

Dotfuscator User's Guide 50

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

To create a new project, you need to do three things:

1: Select Inputs

From the Input Tab, you can use the toolbar to add an input package and/or assembly. From the Add Input dialog, you can
type in the package or assembly’s directory and file name, type in a directory and file mask, or browse the file system for
an input or folder.

2: Specify the Destination Directory

When you create a new project, the output directory is set by default to ${configdir}\Dotfuscated. The ${configdir} is a
built-in property that is expanded to the folder that your project file is saved to.

Dotfuscator User's Guide 51

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Alternatively, you can browse your file system for the intended destination directory. The Browse button on the right of
the Destination Directory field brings up the Select Destination Directory dialog that provides a directory navigation tree.

3: Save the Project Configuration File

You can save your project by either selecting File > Save Project or File > Save Project As from the menu or by clicking
on the Save Project button on the toolbar. Navigate to your project directory, fill in your project configuration file name,
click the Save button, and the project will be saved.

2.5.1.2 Working with Inputs
Adding Assemblies

The Input tab is used to specify a combination of packages and/or assemblies for the project. With the Add New Input
button on the toolbar, you can add a new package or assembly to your project. Clicking on the button brings up the Add
Input dialog, where you can enter the package or assembly’s directory and file name or file mask, or browse for it in the
file system.

Using the Browse window, you can add multiple packages and/or assemblies by multi-selecting the ones you wish to add.

You may also drag and drop packages or assemblies into the Input Assemblies list.

Editing and Removing Inputs

The Edit and Remove buttons are used to change or remove inputs from the project. To use, highlight an input on the list
and click on the appropriate toolbar button. You can also delete an input by highlighting it and pressing the Delete key.

Dotfuscator User's Guide 52

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

When editing an input path, the text you type can have a Project Property embedded in it. For example:

Project Property

c:\${inputdir}\myapplication.exe

Property substitution takes place based on the precedence rules specified in the section on Property List and Properties.
You can view the actual, fully resolved value by placing the cursor on the item that has a Project Property embedded in it.

Dotfuscator User's Guide 53

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Input Properties

Packages can have specific options. If the selected package has any available options the Input Properties button on the
toolbar will be active.

Library Mode

Library mode can be toggled for all assemblies using the library button on the toolbar.

Alternatively, you can select library mode for specific assemblies by checking or un-checking the Library checkbox under
the input assembly’s entry in the list.

Transform XAML Mode

Transform XAML mode can be toggled for all assemblies using the Transform XAML button on the toolbar.

Alternatively, you can set the XAML Transform mode for specific assemblies by checking or un-checking the Transform
XAML checkbox under the input assembly’s entry in the list.

Excluding or including package assemblies from processing

Specified assemblies contained in packages can be excluded from being round tripped through Dotfuscator by right
clicking on the assembly node in the package and selecting Exclude assembly from package. This will cause the
assembly to be added to the list of package artifacts that are not processed by Dotfuscator. By being added to the
artifacts list assemblies are exempt from any obfuscation and instrumentation and all existing strong naming and signing
is preserved. This can be switched back by right clicking again and choosing Include assembly in package.

Dotfuscator User's Guide 54

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Declarative Obfuscation

The Honor Obfuscation Attributes and Strip Obfuscation Attributes settings can be toggled for all input assemblies
using the respective button on the toolbar.

Alternatively, you can configure these settings for specific assemblies by checking or un-checking the appropriate
checkbox under the input assembly’s entry in the list.

Instrumentation Attributes

The Honor Instrumentation Attributes and Strip Instrumentation Attributes settings can be configured for specific
assemblies by checking or un-checking the appropriate checkbox under the input assembly’s entry in the list. See
Configuring and Running Dotfuscator with Application Analytics for details about these settings.

2.5.1.2.1 Directory Inputs
Dotfuscator provides the ability to obfuscate and/or instrument all files in a directory via a Directory Package input. A
Directory Package consists of a relative or absolute path to a directory and optionally a wildcard specifier (file mask) of
which files to match. All managed assemblies that match the file mask will be used as inputs to Dotfuscator. Any
unmanaged assemblies or other files that match the file mask will be listed as Package Artifacts and, while not processed
by Dotfuscator, will be copied to the output directory during the build process.

Dotfuscator User's Guide 55

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

To add a Directory Package select Add Input and type the path and a file mask wildcard to the Add Input dialog box. You
can also add an entire directory of files (*.*) by selecting the Browse button, navigating to the directory of your choice
and leaving text Folder Select in the file name prompt. You can specify an explicit path or use a Project Property to specify
a substitution property for all or part of the path.

All project settings will be applied to all Directory Package assembly inputs and exclusion rules can be created and saved
in the Dotfuscator project for any assemblies contained in the list of package assemblies.

2.5.1.2.2 Silverlight Inputs
Dotfuscator provides the ability to specify a Silverlight deployment file, .XAP, as an input. A Silverlight Package consists of
a single XAP file which will be parsed and presented in the user interface as a Silverlight Package. All managed assemblies
that are contained in the XAP will be used as inputs to Dotfuscator. Any other files contained in the XAP will be listed as
Package Artifacts and, while not processed by Dotfuscator, will be included in the output XAP in the output directory.
Dotfuscator will output a single XAP that contains obfuscated and/or instrumented assemblies, an updated manifest and
any other non-assembly files from the input XAP.

To add a Silverlight Package select Add Input and type the path and a file name in the Add Input dialog box. You can also
browse to the specific XAP file by selecting the Browse button and navigating to it. You can specify an explicit path or use
a Project Property to specify a substitution property for all or part of the path.

All project settings will be applied to all Silverlight Package assembly inputs and exclusion rules can be created and saved
in the Dotfuscator project for any assemblies contained in the list of package assemblies.

A Silverlight 4 package that is signed can be re-signed by Dotfuscator. The signing options are accessed via the
Package Properties button or context menu entry and consists of the Certificate File, Certificate Password, and
Timestamp Server URL settings. The Silverlight certificate options set the certificate file container and optional certificate
password and timestamp server that are used to sign the output XAP file.

2.5.1.2.3 ClickOnce Inputs

Dotfuscator User's Guide 56

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Dotfuscator provides the ability to specify a ClickOnce deployment manifest file, .APPLICATION, as input. A ClickOnce
Package consists of a single .APPLICATION file which will be parsed and presented in the user interface as a ClickOnce
Package. All managed assemblies that are contained in the application will be used as inputs to Dotfuscator. Any other
files contained in the deployment and application manifests will be listed as Package Artifacts and, while not processed by
Dotfuscator, will be included in the output application in the output directory. Dotfuscator will output to the output
directory all obfuscated and/or instrumented assemblies, all necessary manifests, and any other non-assembly files from
the input manifests.

To add a ClickOnce Package select Add Input and type the path and a file name in the Add Input dialog box. You can also
browse to the specific deployment manifest file by selecting the Browse button and navigating to it. You can specify an
explicit path or use a Project Property to specify a substitution property for all or part of the path.

All project settings will be applied to all ClickOnce Package assembly inputs and exclusion rules can be created and saved
in the Dotfuscator project for any assemblies contained in the list of package assemblies.

A ClickOnce Package has two required properties that are accessed via the Package Properties button or context menu
entry, the Certificate File and Certificate Password settings. The ClickOnce certificate options refer the certificate and
optional certificate password that are used to sign all of the output manifest files.

2.5.1.2.4 Windows Store Inputs
Dotfuscator provides the ability to specify a Windows Store deployment file, .APPX, as an input. A Windows Store Package
consists of a single APPX file which will be parsed and presented in the user interface as a Windows Store Package. All
managed assemblies that are contained in the APPX will be used as inputs to Dotfuscator. Any other files contained in the
APPX will be listed as Package Artifacts and will be included in the output APPX in the output directory. Dotfuscator will
output a single APPX that contains obfuscated and/or instrumented assemblies, an updated manifest and any other non-
assembly files from the input APPX.

To add a Windows Store Package select Add Input and type the path and a file name in the Add Input dialog box. You can
also browse to the specific APPX file by selecting the Browse button and navigating to it. You can specify an explicit path
or use a Project Property to specify a substitution property for all or part of the path.

All project settings will be applied to all Windows Store Package assembly inputs and exclusion rules can be created and
saved in the Dotfuscator project for any assemblies contained in the list of package assemblies.

Dotfuscator User's Guide 57

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

All Windows Store packages are signed and must be re-signed by Dotfuscator. The signing options are accessed via the
Package Properties button or context menu entry and consists of the Certificate File, Certificate Password, and
Timestamp Server URL settings. The APPX certificate options set the certificate file container and optional certificate
password and timestamp server that are used to sign the output APPX file.

2.5.1.3 The Settings Tab
The Settings tab allows you to configure global options, project properties, build settings and events, code signing, reporting,
feature map strings for declarative obfuscation, and user-defined assembly load paths. You can choose the feature you
wish to edit by selecting the appropriate node in the navigation pane on the left side of the tab.

Global Options

The global options editor allows you to set the global options for the project.

You can selectively enable or disable Dotfuscator’s features, such as renaming, from this tab. Additionally, you may also
modify the following options:

Dotfuscator User's Guide 58

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Emit Debugging Symbols. Emit debugging symbols for obfuscated assemblies and control JIT behavior. See Debug
Global Option.
Inherit Obfuscation Attributes. This option specifies whether declarative obfuscation attributes applied to types and
methods should also be applied to derived types and overriding methods.
Smart Obfuscation. This allows you to enable or disable automated renaming and removal exclusions for selected
application types. See Smart Obfuscation for more details. By default, it is enabled.
Suppress Ildasm. This tells Dotfuscator to add the SuppressIldasmAttribute to all output assemblies which will prevent
Microsoft's Ildasm utility from displaying the assembly's IL. This is only valid for assemblies targeting .NET 2.0 and
above.
Disable [feature]. Dotfuscator allows you to enable or disable each of its transforms. The transforms that are Disabled
by default in new projects include: Linking, Watermarking, Removal, and String Encryption. Transforms that are Enabled
by default in new projects include Renaming, Control Flow and Instrumentation.
Build Progress. This controls the verbosity of Dotfuscator's output during a build.
Investigate Only. This tells Dotfuscator to generate reports but no output assemblies.
Enable Instrumentation. This allows you to enable or disable the ability to instrument your application which
will process and remove instrumentation attributes. By default, instrumentation is enabled.
Merge Runtime. This allows you to embed the PreEmptive Analytics library in one of the output assemblies rather than
referencing it as a separate DLL. By default, this behavior is enabled.
Send Analytics Messages. This allows you to instrument the application so that it will send application
lifecycle, session lifecycle, and feature use messages to a PreEmptive Analytics Endpoint. See Configuring and Running
Dotfuscator with Application Analytics.
Send Shelf Life Messages. This allows you to instrument the application so that it will send shelf life warning, shelf life
expiration, and sign of life messages to a PreEmptive Analytics Endpoint. See Configuring and Running Dotfuscator with
Shelf Life.
Send Tamper Messages. This allows you to instrument the application so that it will send tamper notification
messages to a PreEmptive Analytics Endpoint. See Configuring and Running Dotfuscator with Application Analytics.

Project Properties

The properties editor allows you to view and add user-defined name-value pairs as Project Properties and to view External
Properties that have been defined from the command line. See Property List and Properties for a full explanation. To add a
Project Property, click the New button on the project properties toolbar.

Dotfuscator User's Guide 59

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

This brings up the New Project Property dialog. Type in a name and a value in the fields provided. Click on the OK button,
and the property will be set.

You can use the Edit and Delete toolbar buttons in a similar manner to modify or remove Project Properties. You can also
delete a property by selecting it and pressing the Delete key.

Build Settings

The build settings editor is where the project's destination directory, and optional temporary directory, are established.

When you create a new project, the output directory is set by default to ${configdir}\Dotfuscated. The ${configdir} is a
built-in project property that is expanded to the folder that contains your project file.

If you want to choose a different destination directory or establish a temporary directory, enter the path to the directory in
the appropriate text field.

Dotfuscator User's Guide 60

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The Temporary Directory is optional and is used to store temporary files during processing. By default Dotfuscator will use
your Windows temporary directory. If you wish to specify this directory, enter the path to the directory in this field or
click Browse to choose its location graphically.

The Destination Directory is required and specifies where the output from the build will reside. Enter the path to the
directory in this field or click Browse to choose its location graphically.

Build Events

The Build Events property page is where you specify Build Events for your Dotfuscator project.

Dotfuscator User's Guide 61

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

For each event you can specify an external program that runs when the event occurs. You can also specify a working
directory and command line options for the program, and whether Dotfuscator should halt the build (fail) if the specified
program returns a non-zero error code.

For the post-build event, you can specify under what conditions it will run (e.g. all the time, only if the build succeeds, or
only if the build fails). You can also specify whether you want the post build event to run only once for the project, or run
once for each output module.

Signing

Strong Naming

The signing editor allows you to configure Dotfuscator to automatically sign or resign your strongly named assemblies.
See Dotfuscating Strong Named Assemblies for more information.

Strong named assemblies are digitally signed. This allows the runtime to determine if an assembly has been altered after
signing. The signature is an SHA1 hash signed with the private key of an RSA public/private key pair. Both the signature
and the public key are embedded in the assembly’s metadata.

Since Dotfuscator modifies the assembly, it is essential that signing occur after running the assembly through Dotfuscator.

Dotfuscator handles this step as part of the obfuscation process.

Authenticode Digital Signing

The Authenticode Digital Signing option allows you to attach an Authenticode digital signature to your application.
Similar to a security certificate, this signature certifies that the application you are obfuscating and instrumenting is your
intellectual property, and allows users to ensure that the resulting binaries were provided by you alone and have not been
modified. This feature adds another level of security to safeguard your application. To attach an Authenticode signature
to your output assemblies, check the Sign Output Assemblies checkbox and then click the Browse... button to locate your
Key File, or enter its path in the text box. Once the Key File field is properly populated, click the Set Password... button to
set the password for your Key File.

The Timestamp URL field provides the ability for you to specify the URL of an Authenticode timestamp service. This URL
will be accessed during Dotfuscator's signing process, and will provide additional data which will allow your assemblies'
Authenticode signatures to remain valid after your code-signing certificate has expired. This element is optional. If
omitted, this additional data will not be included, and your assemblies' Authenticode signatures will become invalid once
your code-signing certificate expires.

Dotfuscator User's Guide 62

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

 Renaming Reports

The renaming report provides a summary of all the elements renamed by Dotfuscator during a specific run, including a
statistics section. The Renaming Report File (Map Output File) section allows you to specify the location to save a renaming
map file. You may leave the default value, or enter your preferred path. If you know the name and path of the mapping
file you want to use, you can type it directly into the text box. Alternatively, you can browse your file system for the
intended file location. The Browse button on the right of the text box brings up the Select Map Output File window that
provides a familiar navigational dialog.

You also have the option of overwriting the output file each time you build the application without generating a
backup of the existing copy of the output.

Dotfuscator has a default transform that can generate a readable HTML formatted version of the report in addition to the
default .XML format. If you do check the Output As HTML box, the Custom Transform (Leave blank for default) field is
activated. As the field name states, leave this blank for the default custom transform or click Browse to select the location
of your choice.

Dotfuscator User's Guide 63

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Removal Report

The removal report provides a summary of all the elements removed by Dotfuscator during a specific run, including a
statistics section. The Removal Report File section allows you to specify the location to save the report. Two approaches
are available. If you know the name and path of the file you want to use, you can type it directly into the text box.
Alternatively, you can browse your file system for the intended file location. The "…" (ellipsis) button on the right of the
text box brings up the Select Removal Report File window that provides a familiar navigational dialog.

You also have the option of overwriting the output file each time you build the application without generating a
backup of the existing copy of the output. The removal report can also be written out as a readable, HTML formatted
document, in addition to the XML formatted version. This report provides a quick cross reference that allows you to
quickly navigate through all types, fields, and methods to see at a glance which were removed. Checking the Output as
HTML checkbox tells Dotfuscator to write this report using the same name and path information as the XML version. If the
default HTML report doesn't meet your reporting requirements, you can provide your own XSL document that Dotfuscator
uses to transform the XML version. If you do check the Output As HTML box, the Custom Transform (Leave blank for
default) field is activated. As the field name states, leave this blank for the default custom transform or click Browse to
select the location of your choice.

Dotfuscator User's Guide 64

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Smart Obfuscation Report

The smart obfuscation report provides a summary of all the elements that could not be renamed or removed based on
rules provided by the smart obfuscation feature. If items are excluded by smart obfuscation but no destination for
the report is specified, the report will appear in a Smart Obfuscation Report tab next to the Build Output tab at the bottom
of Dotfuscator's window. The Smart Obfuscation Report File field allows you to specify the location to save the report. Two
approaches are available. If you know the name and path of the mapping file you want to use, you can type it directly into
the text box. Alternatively, you can browse your file system for the intended file location. The Browse button on the right
of the text box brings up the Select Smart Obfuscation Report File window that provides a familiar navigational dialog.

You have the option of overwriting the output file each time you build the application without generating a backup of
the existing copy of the output. You may also optionally configure the verbosity of the report. Allowed values for the
verbosity attribute are All, Warnings Only, and None. The default value is All.

Dotfuscator User's Guide 65

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Feature Map Strings

The feature map editor is for Declarative Obfuscation. Declarative Obfuscation is implemented via attribute decoration
within the source code while it is being written. The attributes that are used to control Declarative Obfuscation are
System.Reflection.ObfuscateAssemblyAttribute and System.Reflection.ObufscationAttribute.
System.Reflection.ObfuscateAssemblyAttribute controls the obfuscation of the assembly as a whole.
System.Reflection.ObufscationAttribute controls the obfuscation of individual types and their members. Feature Map
Strings enable you to declare, within the source code, what should and should not be obfuscated by using attributes. For
a complete description of Dotfuscator’s support for Declarative Obfuscation, see Declarative Obfuscation via Custom
Attributes. That section describes the Feature Map and lists the native feature strings that Dotfuscator understands.

From the toolbar, you can add, edit, and remove feature map strings. The Add button brings up a dialog that allows you
to map feature strings to supported Dotfuscator features.

Dotfuscator User's Guide 66

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The name that entered in the Feature Name: field is the name of the string. The selected Mapping Strings denote
the configuration the attribute decorated with that feature will produce:

renaming - attribute configures renaming obfuscation.
controlflow - attribute configures control flow obfuscation.
stringencryption - attributes configures stringencryption.
trigger - attribute configures pruning by marking the annotated item as an entry point.
conditionalinclude - attribute configures pruning by conditionally including the annotated item.

When a feature is selected, the Edit and Delete buttons are activated. Selecting Edit brings up a dialog that allows you to
edit the map feature strings to supported Dotfuscator features. You can also delete a feature map string by selecting it
and pressing the Delete key.

Dotfuscator User's Guide 67

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

User Defined Assembly Load Path

Using this editor, you can edit your project’s user defined assembly load paths. From the toolbar, you can add or remove
directories, edit existing directories, or change the order in which they are searched. When you click Add, this window
displays:

Two approaches are available for specifying the assembly load path. If you know the name and path you want to use, you
can type it directly into the text box. Alternatively, you can browse your file system for the intended file location. The
Browse button on the right of the text box brings up the Browse for Folder window that provides a familiar navigational
dialog. When the path is specified, click OK. The path now displays in the User Defined Assembly Load Path window:

Dotfuscator User's Guide 68

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Check the Search First checkbox to have Dotfuscator search the load path before applying its standard search. When
unchecked, Dotfuscator will search the loadpath only after applying its standard search.

2.5.1.4 Configuring
The standalone user interface allows you to configure settings independently for each feature. Each feature has an editor
that has its own tab on the standalone user interface. The editors are fully described in the following topics:

Renaming Editor
Control Flow Editor
String Encryption Editor
Removal Editor
Linking Editor
PreMark Editor
Instrumentation Editor

2.5.1.5 Building the Project
There are two ways to Dotfuscate in the standalone GUI:

You can click on the Build Project button on the Toolbar.
You can click from the Menu: File > Build.

During and after the build, you can see Dotfuscator’s output in the console area.

2.5.1.5.1 The Output Tab

Dotfuscator User's Guide 69

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Once your project is Dotfuscated, you can inspect the results from the Output Tab.

Here you can browse the tree view and see how Dotfuscator renamed your types, methods, and fields. The new names
appear as child nodes under the original nodes in the tree.

2.5.1.6 Viewing Project Files and Reports
Dotfuscator allows you to directly view the XML Configuration, mapping, and report files for your project by loading them
in an XML viewer utility of your choice. You specify the utility you want to use by choosing View > Set Viewer from the
menu. The viewer utility can be any application that displays text files.

To load the Project Configuration file in the External Viewer, select View Project from the standalone user interface
View menu.
To load the Map file in the Viewer, select View Map from the standalone user interface View menu. This menu option
displays the XML version of the report.

Dotfuscator User's Guide 70

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

If you opted to generate an HTML version of the map file, you can view it in your default browser by selecting View
Map HTML Transform from the View menu.
To load the removal report file in the Viewer, select View Removal Report from the user interface View menu. This
menu option will display the XML version of the report.
If you opted to generate an HTML version of the removal report, you can view it in your default browser by selecting
View Map HTML Transform from the View menu.

2.5.1.7 Set User Preferences
The View menu provides a User Preferences option. In the network section of this dialog, the configuration settings of a
proxy server for network access may be entered.

In the News and Updates section of this dialog box, users may opt to allow Dotfuscator to periodically check for updates.
A link to our Privacy Policy is included in this dialog.

Dotfuscator User's Guide 71

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

 There is also a link that takes you to the Customer Feedback Program dialog. The text in the link shows your current opt-
in/opt-out status. If you are concerned about privacy, click the Read our privacy policy link.

2.5.1.8 The Help Menu
The standalone GUI's help menu contains the following items:

Help. This item brings up Dotfuscator's online help (this document).
Register Product. This item is only enabled if your copy has not yet been registered. When selected, it will bring up
Dotfuscator's registration dialog. See Registering and Activating Dotfuscator for more information.
 Activate Dotfuscator. This item is only enabled if your Dotfuscator subscription has not been activated, is expired, or
is about to expire. See Registering and Activating Dotfuscator for more information.
What's New. When selected, this will launch a browser that will take you to Dotfuscator's home page.
Customer Feedback Options. Dotfuscator provides an anonymous usage reporting system that users can opt-in to.
Check For Updates Now. When selected, Dotfuscator will immediately check the web for updates.
About Dotfuscator. When selected, this will bring up Dotfuscator's About box which displays user and version
information.

2.5.2 The Visual Studio Interface
In this section, we describe how to use Dotfuscator when integrated with Visual Studio. Inside Visual Studio, you can
create and edit Dotfuscator projects and add them to your existing solutions. During a build, a Dotfuscator project can
consume binary outputs (i.e. your compiled .NET assemblies) from the development projects in your solution, and in turn,
expose the obfuscated outputs to deployment projects.

The Dotfuscator interface within Visual Studio is unavailable in Dotfuscator for Marketplace Apps.

Dotfuscator User's Guide 72

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

http://www.preemptive.com/privacy-policy.html

2.5.2.1 Creating a Dotfuscator Project
To create a Dotfuscator project and add it to an existing or new solution, perform the same steps that you would for other
Visual Studio project types:

From the New Project dialog, open the Dotfuscator Projects folder in the list of Project Types.
Select the Dotfuscator Project from the template list.
Provide a name and location for your project or accept the defaults.
In the Solution: field, you can choose to create a new solution or add to an existing solution.
Provide a name for your Solution.
You can select if you want to Create Directory for solution and if you want to Add solution to Source Control by checking
the appropriate box(es).
Click OK.

2.5.2.2 Solution Explorer and the Dotfuscator Project Tree
When working with Dotfuscator Projects in Visual Studio, Solution Explorer is the starting point. Like many other project
types, Dotfuscator projects appear as trees in Solution Explorer.

Dotfuscator User's Guide 73

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The top level project item in the Dotfuscator project tree always has the name that you have given to your Dotfuscator
project. You can access the project's property pages from this item through its context menu. See Project Properties for a
description of the property pages that a Dotfuscator project provides.

There are always three items immediately under the top level Dotfuscator Project item:

Input Assemblies Folder

This is where you manage the inputs that are to be Dotfuscated. Right clicking on this item gives you a context menu that
may be used to add Inputs . Once added, each package and assembly appears as an item in the folder. An input may be
removed from the project by selecting the item and pressing the Delete key. See Working with Inputs for more
information about the different kinds of inputs.

Configuration Options Folder

This folder contains an item for each available configuration editor. You can display the editor by double clicking the
appropriate item.

Output Browser Item

After you build your Dotfuscator project, you can browse the output assemblies by double clicking this item. The output
browser provides a view of your assemblies similar to that provided by class browser. It shows original and obfuscated
symbol names, as well as indicating which symbols were removed from the input assemblies.

2.5.2.3 Project Configurations

Dotfuscator User's Guide 74

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

With the exception of inputs and their properties, Visual Studio Dotfuscator Project settings are configuration dependent.
In other words, you can have different obfuscation settings based on the current active configuration. For example, in a
debug build you may want to emit the debugging symbol file, while for a release build you might not.

Dotfuscator project configurations are managed with Visual Studio's Configuration Manager in the same way as other
Visual Studio project types. Through the Configuration Manager, you can edit, create, and remove Dotfuscator project
configurations. You can also associate them with your solution configurations.

By default, when you create a Dotfuscator project, two project configurations are created for you and associated with the
corresponding solution configuration: Debug and Release. These two configurations are identical at project creation time,
except the debug configuration has a project property set to Emit Debugging Symbols.

2.5.2.4 Deploying a Dotfuscator Project
Within Visual Studio, a Dotfuscator project exposes its outputs, just like other familiar Visual Studio project types, such as
C# or VB.NET. As a result, you can use a Dotfuscator project as a source for any deployment or setup project that knows
how to consume Visual Studio projects. This section assumes you are familiar with setup and deployment projects.

Dotfuscator exposes several output groups, summarized below:

Output Group Description

Primary Output Contains the output assemblies and any package artifacts

Localized Resource DLLs Contains satellite DLLs

Reports Contains removal report and HTML report files

Map Files Contains XML renaming map file

Debug Symbols Contains PDB files for output assemblies, if any.

 To tell a setup project to package all your obfuscated assemblies, simply point the setup project to the Dotfuscator
project’s Primary Output group.

For assemblies that are sourced from other Visual Studio Projects, Dotfuscator also exposes the source project’s
dependencies to the deployment project.

2.5.2.5 Working with Inputs
Input packages and assemblies are displayed in the Dotfuscator project tree in Solution Explorer in the Input Assemblies
folder. You can add inputs by using the context menus associated with the top level project item, the Input Assemblies
folder item, or from Visual Studio's Project menu.

There are two ways to add input assemblies, depending on whether you want to Dotfuscate an output from another
Visual Studio project in your solution, or simply Dotfuscate a package or assembly on your file system.

Dotfuscator User's Guide 75

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Input Assemblies from other Projects

To have Dotfuscator use another project's output, you add the input assembly via the Add Project Output item that is on
the Dotfuscator project's context menu or on Visual Studio's project menu. Selecting this item shows Dotfuscator's Add
Project Output dialog. From this dialog you can browse the other projects in your solution.

Each Visual Studio project type defines a set of output groups that other projects may access. Output groups contain files
that are created by the source project. For example, in the screen shot below, the GettingStarted C# project defines an
output group called Primary output and places the output binary in it (GettingStarted.exe).

The contents of an output group can vary by project configuration. For example, the GettingStarted project creates a
GettingStarted.exe for both the Debug and Release configurations, but these are written to different directories
when a build is performed. You can tell Dotfuscator to always use a particular output group based on configuration, or
you can tell Dotfuscator to always use the output group from whichever project configuration is currently active. When
you select the active configuration, Dotfuscator will automatically update its inputs whenever the source project's
configuration changes.

Dotfuscator User's Guide 76

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Inputs from the File System

To tell Dotfuscator about a package or input assembly on your file system, you add the input via the Add Input item that
is on the Dotfuscator project's context menu or on Visual Studio's project menu. Selecting this item brings up a file
browse dialog that will allow you to choose one or more inputs.

2.5.2.6 Project Properties
In Visual Studio, you can access a Dotfuscator project's property pages from the top level item for the project in Solution
Explorer:

Configuration Properties > Global Options

The Global Options property page allows you to set the global options for the Project. These are explained in detail in the
Global Section. You can also selectively enable Dotfuscator’s features. Here is a summary of the properties you can set:

Disable [feature]. Dotfuscator allows you to enable or disable each of its transforms. When a transform is disabled, its
Configuration Option node appears “grayed out” in solution explorer. You can enable or disable a transform using this
property sheet or by right clicking on the appropriate node and checking or un-checking the Disabled menu item. The
transforms that are Disabled by default in new projects include: Linking, Watermarking, Removal, and String Encryption;
Transforms that are Enabled by default in new projects include Renaming, Control Flow and Instrumentation.
Build Progress. This controls the verbosity of Dotfuscator's output during a build.
Error. This setting is for diagnostic purposes. Turning this on will prevent Dotfuscator from deleting the generated IL
that is written to the temp directory during a build.
Smart Obfuscation. This allows you to enable or disable automated renaming and removal exclusions for selected
application types. See Smart Obfuscation for more details. By default, it is enabled.
Investigate Only. This tells Dotfuscator to generate reports but no output assemblies.
Emit Debugging Symbols. Emit debugging symbols for obfuscated assemblies and control JIT behavior. See Debug
Global Option.
Suppress Ildasm. This tells Dotfuscator to add the SuppressIldasmAttribute to all output assemblies which will prevent
Microsoft's Ildasm utility from displaying the assembly's IL. This is only valid for assemblies targeting .NET 2.0 and
above.
Instrumentation. See Configuring and Running Dotfuscator with Application Analytics.

Dotfuscator User's Guide 77

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Configuration Properties > Project Properties

The Project Properties page contains a facility to view and add user-defined name-value pairs as Project Properties and to
view External Properties that have been defined by Dotfuscator itself.

Project Properties can be thought of as simple string substitution macros that may be used wherever a filename or path is
required. See Property List and Properties for a full explanation.

To add a Project Property, click the New button, then edit the property name and value in the Project Properties grid. To
delete one or more Project Properties, select the row or rows in the Project Properties grid that you wish to delete, then
click the Delete button.

Dotfuscator User's Guide 78

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Configuration Properties > Build Settings

The Build property page allows you to specify the output directory and an optional temporary directory.

Build Directories

When you create a new project, the output directory is set by default to "${configdir}\Dotfuscated". The
${configdir} is a built in property that is expanded to the folder that your project configuration file is saved to.

If you want to choose a different output directory, you can browse for it or type it into the Output Directory text box.

You can also optionally specify a temporary directory for Dotfuscator to use for scratch files during processing. If not
specified, the temp directory specified by the Windows environment is used.

Dotfuscator User's Guide 79

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

 Configuration Properties > Build Events

The Build Events property page is where you specify Build Events for your Dotfuscator project. For each event, specify an
external program (Program Path) that runs when the event occurs. You can specify a working directory and command line
options for the program and you can specify if the Dotfuscator build should halt (fail) if the specified program fails.

For the post build event, specify under what conditions it will run (e.g. all the time, only if the build succeeds, or only if the
build fails).

You can also specify whether you want the post build event to run only once for the project, or run once for each output
module.

Dotfuscator User's Guide 80

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

 Configuration Properties > Signing

Strong Naming

The Signing property page allows you to configure Dotfuscator to automatically sign or resign strongly named assemblies.
See Dotfuscating Strong Named Assemblies for more information.

Authenticode Digital Signing

The Authenticode Digital Signing option allows you to attach an Authenticode digital signature to your application.
Similar to a security certificate, this signature certifies that the application you are obfuscating and instrumenting is your
intellectual property, and allows users to ensure that the resulting binaries were provided by you alone and have not been
modified. This feature adds another level of security to safeguard your application. To attach an Authenticode signature
to your output assemblies, check the Sign Output Assemblies checkbox and then click the "…" (ellipsis) to locate your Key
File, or enter its path in the text box. Once the Key File field is properly populated, click the Set Password... button to
set the password for your Key File.

The Timestamp URL field provides the ability for you to specify the URL of an Authenticode timestamp service. This URL
will be accessed during Dotfuscator's signing process, and will provide additional data which will allow your assemblies'
Authenticode signatures to remain valid after your code-signing certificate has expired. This element is optional. If
omitted, this additional data will not be included, and your assemblies' Authenticode signatures will become invalid once
your code-signing certificate expires.

Dotfuscator User's Guide 81

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Configuration Properties > Reports > Renaming

The renaming report provides a summary of all the elements renamed by Dotfuscator during a specific run, including a
statistics section. The Renaming Report File (Output Map File) section allows you to specify the location to save a renaming
map file. You may leave the default value, or enter your preferred path. If you know the name and path of the mapping
file you want to use, you can type it directly into the text box. Alternatively, you can browse your file system for the
intended file location. The Browse button on the right of the text box brings up the Select Map Output File window that
provides a familiar navigational dialog.

You also have the option of overwriting the output file each time you build the application without generating a backup
of the existing copy of the output. Dotfuscator has a default transform that can generate a readable HTML formatted
version of the report in addition to the default .XML format. If you do check the Output As HTML box, the Custom
Transform (Leave blank for default) field is activated. As the field name states, leave this blank for the default custom
transform or click "…" (ellipsis) to select the location of your choice.

Dotfuscator User's Guide 82

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Configuration Properties > Reports > Removal

The removal report provides a summary of all the elements removed by Dotfuscator during a specific run, including a
statistics section. The Removal Report File section allows you to specify the location to save the report. Two approaches
are available. If you know the name and path of the file you want to use, you can type it directly into the text box.
Alternatively, you can browse your file system for the intended file location. The "…" (ellipsis) button on the right of the
text box brings up the Select Removal Report File window that provides a familiar navigational dialog.

You also have the option of overwriting the output file each time you build the application without generating a backup
of the existing copy of the output. The removal report can also be written out as a readable, HTML formatted document,
in addition to the XML formatted version. This report provides a quick cross reference that allows you to quickly navigate
through all types, fields, and methods to see at a glance which were removed. Checking the Output as HTML checkbox
tells Dotfuscator to write this report using the same name and path information as the XML version. If the default HTML
report doesn't meet your reporting requirements, you can provide your own XSL document that Dotfuscator uses to
transform the XML version.If you do check the Output As HTML box, the Custom Transform (Leave blank for default) field is
activated. As the field name states, leave this blank for the default custom transform or click "…" (ellipsis) to select the
location of your choice.

Dotfuscator User's Guide 83

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Configuration Properties > Reports > Smart Obfuscation

The smart obfuscation report provides a summary of all the elements that could not be renamed or removed based on
rules provided by the smart obfuscation feature. If items are excluded by smart obfuscation but no destination for
the report is specified, the report will appear in the Smart Obfuscation Report view of the Output tab at the bottom of
Visual Studio's window. The Smart Obfuscation Report File field allows you to specify the location to save the report. Two
approaches are available. If you know the name and path of the mapping file you want to use, you can type it directly into
the text box. Alternatively, you can browse your file system for the intended file location. The "…" (ellipsis) button on the
right of the text box brings up the Select Smart Obfuscation Report File window that provides a familiar navigational
dialog.

You have the option of overwriting the output file each time you build the application without generating a backup of
the existing copy of the output. You may also optionally configure the verbosity of the report. Allowed values for the
verbosity attribute are All, Warnings Only, and None. The default value is All.

Dotfuscator User's Guide 84

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Configuration Properties > Setup > Feature Map Strings

The feature map strings property page is for Declarative Obfuscation. For a complete description of Dotfuscator’s support
for Declarative Obfuscation, see Declarative Obfuscation via Custom Attributes. That section describes the Feature Map
and lists the native feature strings that Dotfuscator understands.

From the toolbar, you can add, edit, and remove feature map strings. The Add and Edit buttons bring up a dialog that
allows you to map feature strings to supported Dotfuscator features.

Dotfuscator User's Guide 85

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

When you click the Add icon, the New Feature Map dialog box displays. Enter the Feature Name and select the
appropriate Mapping String for that feature. To select more than one mapping string, press and hold the Control key and
click on the appropriate Mapping String. Click OK when you are done. The new feature and its strings display in the
Feature Map Strings Property page:

The new feature and its strings display in the Feature Map Strings Property page:

Dotfuscator User's Guide 86

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Configuration Properties > Setup > Assembly Load Path

Using this property page, you can edit your project’s user defined assembly load path. From the toolbar, you can add or
remove directories, edit existing directories, or change the order in which they are searched. Check the Search First
checkbox to have Dotfuscator search the load path before applying its standard search. When unchecked, Dotfuscator will
search the loadpath only after applying its standard search.

Dotfuscator User's Guide 87

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.5.2.7 Input Assembly Properties
In Visual Studio, every input assembly exposes properties to the properties window. To bring up the properties window
for an input assembly, select the input assembly node under your Dotfuscator project in Solution Explorer, then launch
Visual Studio’s properties window (from the View menu or using F4). You can manage properties for multiple input
assemblies by selecting multiple input assemblies; the properties exposed in the properties window apply to the group of
selected assemblies.

From here, for each assembly you can set library mode, set the Transform XAML mode, mark if it should be obfuscated or
left as a package artifact, and you can configure Declarative Obfuscation via the Honor Obfuscation Attributes and Strip
Obfuscation Attributes properties.

You can also set instrumentation options for selected assemblies. Specifically, you can select whether you would like
Dotfuscator to honor instrumentation attributes for selected assemblies, and whether you would like Dotfuscator to strip
these attributes from the output assembly. See Configuring and Running Dotfuscator with Application Analytics for
details.

In addition, there are read-only properties that display information about the input assembly’s file.

Dotfuscator User's Guide 88

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

In the Dotfuscator section of the Properties panel, you may set the following to True or False:

Artifact: Setting the Artifact to True tells Dotfuscator to not process the specified assembly as an input. It will not be
obfuscated or instrumented and all existing signatures will be preserved. Setting the Artifact to False will cause
Dotfuscator to process the assembly as an input for obfuscation and instrumentation.

Honor Instrumentation Attributes: Setting Honor instrumentation attributes to True tells Dotfuscator to process these
attributes and perform the indicated instrumentation transformations on the target assembly. Setting this option to False
tells Dotfuscator to ignore any instrumentation attributes.

Instrumentation attributes are custom attributes that can be applied in your source code to track application
stability, features, usage, and to add shelf life functionality.

Honor Obfuscation Attributes: The default setting of Honor obfuscation attributes is True, which tells Dotfuscator to
process these attributes and perform the indicated obfuscation transformations on the target assembly. Setting this
option to False tells Dotfuscator to ignore any obfuscation attributes.

Obfuscation attributes are custom attributes that can be applied in your source code to explicitly declare the
inclusion or exclusion of types, methods, enums, interfaces, or members from various types of obfuscation. The
attribute you would use to include or exclude types, methods, enums, interfaces, and members from obfuscation is
System.Reflection.ObfuscationAttribute. If you want to denote that a specific assembly will have its items
included or excluded from obfuscation, you would use System.Reflection.ObfuscateAssemblyAttribute.

Key Output: This setting allows you to explicitly set one of the Dotfuscator project’s input assemblies to be the key
output assembly. The key output is consumed by deployment projects. If assembly linking is enabled, a linked output
assembly will be the key output if one of its source assemblies was marked as the key output. If no input assembly is
marked as the key output, Dotfuscator will choose one.

Dotfuscator User's Guide 89

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

tells Dotfuscator to leave the attributes in the output assembly unless the individual attributes designate that they should
be stripped via the StripAfterObfuscation property.

Strip obfuscation Attributes: Dotfuscator can strip out all of the obfuscation attributes when processing is complete, so
output assemblies will not contain clues about how it was obfuscated. Selecting this option tells Dotfuscator to remove
these attributes from the target output assembly. De-selecting this option tells Dotfuscator to leave the attributes in the
output assembly unless the individual attributes designate that they should be stripped via the StripAfterObfuscation
property.

Transform XAML: Dotfuscator can rename items in XAML resources as used in Silverlight applications as well as the
compiled XAML resources (BAML) of Windows Presentation Foundation applications. The default value is True, which tells
Dotfuscator to attempt to rename items in the markup resources and match the renaming to the items references in the
code-behind. Leaving this option enabled significantly strengthens the obfuscation of Windows Presentation Foundation
and Silverlight applications as well as decreasing the number of items that must be manually excluded from renaming.

2.5.2.8 Input Package Properties
In Visual Studio, some package inputs expose properties to the properties window. To bring up the properties window for
an input assembly, select the package node under your Dotfuscator project in Solution Explorer, then right click and select
the Package Options menu item to launch the package specific properties window .

2.5.2.9 Configuring
Within a Visual Studio Dotfuscator project, you configure settings independently for each feature. Each feature has an
editor that may be launched by double clicking on the appropriate item in your Dotfuscator project tree opened in
Solution Explorer. Each editor is described in the following topics:

Renaming Editor

Dotfuscator User's Guide 90

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Control Flow Editor
String Encryption Editor
Removal Editor
Linking Editor
PreMark Editor
Instrumentation Editor

2.5.2.10 Building the Project
A Visual Studio Dotfuscator project, like other Visual Studio project types, can be built at the project level and, by default,
will be built when its containing solution is built. If you do not want your Dotfuscator project to be built for a particular
solution configuration, you can turn off build using Visual Studio's Configuration Manager.

When a Dotfuscator project builds, it applies the settings for its active configuration to the inputs. The output packages
and assemblies are then written to the directory specified on the project's Build property page.

During the build, Dotfuscator's output is written to Visual Studio's output window, and any build errors are added to the
task list.

After a successful build, the output browser is updated. You can activate the output browser by double clicking the
Output Browser item for your Dotfuscator project in the Solution Explorer. The output browser provides a view of your
output assemblies similar to that provided by the class browser. It shows original and obfuscated symbol names, as well as
indicating which symbols were removed from the input assemblies.

If you chose to generate HTML reports for renaming or removal, these too are available for viewing after a build.

2.5.2.11 The View Menu
The Visual Studio Integrated version of Dotfuscator adds a Dotfuscator cascading menu to Visual Studio's View menu.
Depending on what you are doing, you will see up to four items on this menu: Two items for viewing reports generated by
a successful build, one item for launching the stack trace decoding tool, and one item to generate new shelf life tokens.

Viewing HTML Reports

HTML renaming and removal reports can be viewed in Visual Studio. If the HTML report files exist and your Dotfuscator
project is the active project in Solution Explorer, then two menu items (one for each report) are enabled on the View >
Dotfuscator menu. Clicking on one will bring up the appropriate report in your default browser.

See The Rename Options Tab for setting up HTML Reports for renaming, and The Removal Options Tab for removal.

Stack Trace Decoding Tool

In Visual Studio, Dotfuscator's Stack Trace Decoding Tool is implemented as a Visual Studio tool window. You can activate
it by clicking View > Dotfuscator > Decode Obfuscated Stack Trace from the menubar. For details on how to use the
tool, see Decoding Obfuscated Stack Traces.

Dotfuscator User's Guide 91

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Shelf Life Token Generator

In Visual Studio, Dotfuscator's Shelf Life Token generator is implemented as a Visual Studio tool window. You can activate
it by clicking View > Dotfuscator > Generate Shelf Life Token from the menubar. For details on how to use the tool, see
Generate Shelf Life Token.

2.5.2.12 The Help Menu
The Visual Studio Integrated version of Dotfuscator adds a Dotfuscator cascading menu to Visual Studio's Help menu. The
menu contains the following items:

Register Product. This item is only enabled if your copy has not yet been registered. When selected, it invokes
Dotfuscator's registration dialog. See Registering and Activating Dotfuscator for more information.
 Activate Dotfuscator. This item is only enabled if your Dotfuscator subscription has not been activated, is expired, or
is about to expire. See Registering and Activating Dotfuscator for more information.
What's New. When selected, this launches a browser that takes you to Dotfuscator's home page.
Customer Feedback Options. This item allows you to Opt-in to PreEmptive Solutions’ anonymous customer feedback
program, which enables users to help improve the Dotfuscator family of software products and services.
Check For Updates Now. When selected, Dotfuscator immediately checks the web for updates.
About Dotfuscator. When selected, this brings up Dotfuscator's About box which displays user and version
information.

2.5.2.13 Set User Preferences
In Visual Studio, Dotfuscator's User Preferences are available by clicking Tools > Options > Dotfuscator menu.

In the News and Updates section of this dialog box, users may opt to allow Dotfuscator to periodically check for updates.

In the Network section of this dialog, the configuration settings of a proxy server for network access may be entered.
Proxy information is not required if you do not have a proxy server or if those settings are controlled via Internet Explorer.

Dotfuscator User's Guide 92

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The User Preferences Option window has a link to launch the Customer Feedback Program dialog. The text in the link
shows your current opt-in/opt-out status.

2.5.3 The Renaming Editor
The Renaming editor displays three configuration tabs: the Exclude tab, which is used to graphically set custom exclusion
rules, and the Options tab, which is used to configure other options related to renaming; the Built-in Rules tab, which is
used to perform common renaming exclusions without having to write custom rules.

For new projects, the default setting for the Renaming transform is Enabled.

2.5.3.1 The Rename Options Tab
The Rename Options tab is used to set renaming options and identify map files to be used for incremental obfuscation.

Dotfuscator User's Guide 93

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The Renaming Option section contains three checkboxes used to select or deselect the Enhanced Overload Induction,
Keep Namespace, and Keep Hierarchy options.

You can select your preferred Renaming Scheme from the dropdown list. The predefined renaming schemes are
described in Renaming Schemes.

Checking the Compatibility with XML serializer checkbox adds additional rules to the renamer. All classes and members
will be renamed in a way that allows XML Serialization. See XML Serialization and Renaming.

Checking the Introduce explicit method overrides when renaming checkbox allows overriding methods to have
different names from those of the methods they override.

You can select a rename prefix by checking the Rename Prefix checkbox. The text that you enter in the textbox is added
to the beginning of every obfuscated type name. If you do not enter any text, Dotfuscator selects a prefix for each input
module, based on the module name. See Renaming Prefixes for more information about renaming prefixes.

The Map Input File section allows you to specify a map file from a previous run so that the naming scheme is retained
across successive Dotfuscator runs, a process known as Incremental Obfuscation. Specific details of this feature are
presented in the Incremental Obfuscation section. Two approaches are available. If you know the name and path of the
mapping file you want to use, you can type it directly into the edit box. Alternatively, you can browse your file system for
the intended file location. The Browse button on the right of the edit box brings up the Select Map Input File window that
provides a familiar navigational dialog.

For ease of navigation, this screen has a note marked with an asterisk (*) at the bottom reminding you that the Map
Output File is configured on the Renaming Reports Tab located in the Settings Tab.

2.5.3.1.1 Enhanced Overload-Induction Method Renaming

Dotfuscator User's Guide 94

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Dotfuscator extends Overload-Induction™ by allowing a method’s return type or a field's type to be used as a criterion in
determining method or field uniqueness. This feature allows up to 15% more redundancy in method and field renames. In
addition, since overloading on method return type or field type is not allowed in source languages such as C# and VB, this
further hinders decompilers.

This feature also relies on compile-time analysis of your application. Therefore, remote method calls cannot use this
feature because remoting throws an ambiguous match exception when calling a method on a remote object that differs
only by the return type from another method of the type. Therefore, when using remoting, you have two options. First, do
not use enhanced overload induction; normal overload induction will still occurs and is perfectly safe. Second, exclude
remotely called classes from renaming. Because of the risks involved in using this option with remoting, this feature is
turned off by default.

For similar reasons, Enhanced Overload Induction is automatically suppressed on all types marked as serializable. If this is
not the desired behavior, then the default can be changed by adding the "enhancedOIOnSerializables" option to
the renaming section of the configuration file (see renaming options), or by checking the Include serializable types in
Enhanced Overload Induction box on the Renaming Options tab in the user interface.

2.5.3.1.2 Class Renaming Options
Full Class Renaming

The default methodology renames the class and namespace name to a new, smaller name. The idea behind this is quite
simple. Our example becomes:

Original Name New Name

Preemptive.Application.Main a

Preemptive.Application.LoadData b

Preemptive.Tools.BinaryTree c

Preemptive.Tools.LinkedList d

Note: All classes are now in the <global> namespace.

Keepnamespace Option

This methodology is excellent as a way to hide the names of your classes while maintaining namespace hierarchy. You
give up some size reduction and obfuscation potential, but preserve your namespace names. This is useful for libraries
that may be linked to obfuscated code, or for applications that use already obfuscated code. An example of this type of
renaming is:

Original Name New Name

Preemptive.Application.Main Preemptive.Application.a

Dotfuscator User's Guide 95

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Preemptive.Application.LoadData Preemptive.Application.b

Preemptive.Tools.BinaryTree Preemptive.Tools.a

Preemptive.Tools.LinkedList Preemptive.Tools.b

Note: Keepnamespace and Keephierarchy are mutually exclusive options.

Keephierarchy Option

This option tells Dotfuscator to preserve the namespace hierarchy, while renaming the namespace and class names. For
example:

Original Name New Name

Preemptive.Application.Main a.a.a

Preemptive.Application.LoadData a.a.b

Preemptive.Tools.BinaryTree a.b.a

Preemptive.Tools.LinkedList a.b.b

Note: KeepNamespace and KeepHierarchy are mutually exclusive options.

Renaming Prefixes

In some cases it is desirable to have unique top level type names across assemblies, even if those type names are not
visible outside their defining assemblies. This is done by running all assemblies through Dotfuscator at the same time. As
this approach is not always feasible, Dotfuscator provides a way to enforce uniqueness even across runs, using a renaming
prefix.

Renaming prefixes are appended to top level renamed type names. You can specify your own renaming prefix that will be
used for all assemblies in a given Dotfuscator run, or you can allow Dotfuscator to pick a prefix for you, based on the
type's module name.

One interesting application of this feature is namespace induction. By defining a custom renaming prefix that ends with a
".", (e.g. "MY_PREFIX."), you can place your obfuscated types in a custom defined, common namespace.

Examples:

Original Name Prefix Type Renaming New Name

Application.Main [default] default MyApplicationa

Application.LoadData myprefix default myprefixa

Tools.BinaryTree myprefix keephierarchy a.myprefixa

Tools.LinkedList myprefix keepnamespace Tools.myprefixa

Tools.Proxy mynamespace. keepnamespace Tools.mynamespace.a

Dotfuscator User's Guide 96

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

There are three ways you can configure renaming prefixes for your project:

Using the GUI, check the Rename Prefix checkbox on the Rename Options subtab. If you want to manually specify the
prefix, type it in the text box; otherwise leave it blank to have Dotfuscator generate the prefix.
On the command line, use the /prefix:[on > off] option. To specify a custom prefix from the command line, use
the /p option to define a property named "prefix".

Prefix On

Dotfuscator /p=prefix=MY_PREFIX /pref:on [other options...]

Using a text or XML editor, manually add an option called "prefix" to the renaming section. To define a custom prefix,
add a "prefix" property in the propertylist section, with your custom string.

Define a Custom Prefix

 <propertylist>
 <!-- defining prefix here tells the renamer to use the value as the
 renaming prefix, if renaming prefix is enabled -->
 <property name="prefix" value="MY_PREFIX"/>
 </propertylist>
 <renaming>
 <!-- this turns on the renaming prefix feature -->
 <option>prefix</option>
 ...
 </renaming>

2.5.3.1.3 XML Serialization and Renaming
Dotfuscator allows you to globally switch the renaming algorithm to rename classes and members in a way that is
compliant with the XML Serializer. If you intend for fully obfuscated classes to be serialized by your application, then run
the renamer in this mode; this mode is not required if you are excluding serializable classes from renaming.

Here is a list of rules the renamer follows when running in this mode:

Enhanced Overload Induction is turned off.
Public instance properties and fields within all types are given names that are unique up and down the inheritance
hierarchy.
Property metadata is preserved on properties decorated with any attribute in the System.Xml.Serialization
namespace.
On public types that implement the System.Collections.ICollection interface, the Add method is excluded
from renaming and Property metadata is preserved on the Item property.

Dotfuscator User's Guide 97

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

On public types that implement the System.Collections.IEnumerable interface, the Add and GetEnumerator
methods are excluded from renaming.

See renaming options for the configuration option that sets this mode. From the user interface, you can set this mode in
the Renaming Options Tab.

2.5.3.1.4 Introduce Explicit Method Overrides When
Renaming

This functionality lets Dotfuscator rename more methods by allowing it to introduce explicit (i.e. non-syntactic) method
overrides. In other words, overridden methods can have different names than the methods they override. For example,
ordinarily, if a method overrides Object.ToString(), Dotfuscator would not be able to rename it without breaking the
override relationship, since typically the Object class is not in an input assembly and therefore its ToString() would not be
renamed. With this setting, Dotfuscator can rename the overriding method and introduce metadata that tells the CLR that
the method is meant to override Object.ToString().

Original Name New Name

System.Object.ToString() ToString() [class not in input assembly]

Preemptive.MyClass.ToString() a()

2.5.3.2 The Rename Exclude Tab
The Rename Exclude Tab gives you complete granular control over all parts of your program that you may wish to exclude
from the renaming process.

You may exclude specific items from renaming by browsing the tree view of your application and checking the items you
want to exclude. In addition, you may visually create your own custom rules for selecting multiple items for exclusion.

To help you fine-tune your exclusion rules, you can preview their effects at any time. The application tree view shades all
items selected for exclusion. You can preview the cumulative effects of all rules, or preview a specific rule that you select.

See the section on Using the Graphical Rules Editing Interface for detailed information about working with Inclusion and
Exclusion Rules.

See the section on Renaming Exclusion Rules for a detailed discussion of renaming exclusion rules.

Dotfuscator User's Guide 98

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.5.3.2.1 Renaming Exclusions
The exclude list section provides a dynamic way to fine tune the renaming of the input assemblies. The user specifies a list
of rules that are applied at runtime. If a rule selects a given class, method, or field, then that item is not renamed.

These rules are applied in addition to rules implied by global options such as library.

Rules are logically OR-ed together.

Regular Expressions (REs) may be used to select namespaces, types, methods or fields. The optional regex attribute is
used for this purpose. The default value of regex is false. If regex is true then the value of the name attribute is
interpreted as a regular expression; if it is false, the name is interpreted literally. This is important since regular expressions
assign special meaning to certain characters, such as the period. Here are some examples of simple regular expressions:

Here are some examples of simple regular expressions:

.* Matches anything
MyLibrar. Matches MyLibrary, MyLibrari, etc.
My[\.]Test[\.]I.* Matches My.Test.Int1,My.Test.Internal, etc.
Get.* Matches GetInt, GetValue, etc.
Get* Matches Ge,Get,Gett,Gettt, etc.

Please refer to the .NET Framework documentation for a full description of the regular expression syntax.

Dotfuscator User's Guide 99

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.5.3.3 The Rename Built-In Rules Tab
Dotfuscator’s renaming Built-In Rules tab displays renaming exclusion rules defined in %ProgramData%\PreEmptive
Solutions\Common\dotfuscatorReferenceRule_v1.4.xml. These rules are standard exclusions that apply to specific
application types or technologies. Each rule has a description that displays on the form when the rule is selected. You can
apply a built-in rule to your project by checking its checkbox.

2.5.4 The Control Flow Editor
The Control Flow editor displays two configuration tabs: the Exclude tab, which is used to graphically set custom exclusion
rules, and the Options tab, which is used to configure other options related to control flow obfuscation.

For new projects, the default setting for the Control Flow transform is Enabled.

2.5.4.1 The Control Flow Options Tab
The Control Flow Options tab is used to set the global level of control flow obfuscation.

Dotfuscator User's Guide 100

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.5.4.2 The Control Flow Exclude Tab
The Control Flow Exclude Tab gives you complete granular control over all parts of your program that you may wish to
exclude from the control flow obfuscation process. From here, you can also disable control flow obfuscation altogether.

You may exclude specific items from control flow obfuscation by browsing the tree view of your application and checking
the items you want to exclude. In addition, you may visually create your own custom rules for selecting multiple items for
exclusion.

To help you fine-tune your exclusion rules, you can preview their effects at any time. The application tree view will shade
all items selected for exclusion. You can preview the cumulative effects of all rules, or preview a specific rule that you
select.

See the section on The Rules Editing Interface for detailed information about working with Inclusion and Exclusion Rules.

Dotfuscator User's Guide 101

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.5.5 The String Encryption Editor
The String Encryption editor displays only one configuration tab: the Include tab, which is used to graphically set custom
inclusion rules for string encryption.

For new projects, the default setting for the String Encryption transform is Disabled.

2.5.5.1 The String Encryption Include Tab
The String Encryption Include tab provides complete granular control over all parts of your program that you may wish to
include in the string encryption process. From here, you can also disable string encryption altogether.

You may include specific items for string encryption by browsing the tree view of your application and checking the items
you want to include. In addition, you may visually create your own custom rules for selecting multiple items for inclusion.

To help you fine-tune your inclusion rules, you can preview their effects at any time. The application tree view will shade
all items selected for inclusion. You can preview the cumulative effects of all rules, or preview a specific rule that you
select.

See the section on The Rules Editing Interface for detailed information about working with Inclusion and Exclusion Rules.

2.5.6 The Removal Editor

Dotfuscator User's Guide 102

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The Removal editor displays three configuration tabs:

The Include Triggers tab, which is used to tell Dotfuscator about the entry points for your application, so it can
determine which code can be safely removed.
The Conditional Includes tab, which is used to tell Dotfuscator about types that should not be wholly removed, because
of special cases such as reflection.
The Removal Options tab, which is used to configure the removal report.

For new projects, the default setting for the Removal transform is Disabled.

2.5.6.1 Understanding Include Triggers and Conditional
Includes

Dotfuscator can statically analyze an application to determine which elements are not actually used and remove those
elements from the output binaries, reducing application size.

The static analysis works by traversing your code, starting at a set of methods called “triggers," or entry points. In general,
any method that you expect external applications to call must be defined as a trigger. For example, in a simple standalone
application, the Main method would be defined as a trigger. An assembly can have more than one trigger defined for it.

Note that turning on library mode for an assembly causes Dotfuscator to treat all visible
types and members as entry points, automatically.

As Dotfuscator traverses each trigger method’s code, it notes which fields, methods, and types are being used. It then
analyses all the called methods in a similar manner. The process continues until all called methods have been analyzed.
Upon completion, Dotfuscator is able to determine a minimum set of types and their members necessary for the
application to run. Only these types are included in the output assembly.

If Dotfuscator is unable to tell that certain methods are being called (due to reflection / XAML / etc.), then it may try to
remove things that are required at runtime. To avoid this, you configure Include Triggers to tell Dotfuscator which class
members (method, property, field, event) should be treated as "entry points" for the static analysis. Dotfuscator will
preserve those members and all descendants of those members in the call graph.

Sometimes, though, this isn't the most optimal behavior. Consider an application that loads a set of types via reflection,
casts them to an interface, and then invokes methods on that interface - a plugin model, essentially. Dotfuscator's static
analysis won't identify the types that could potentially be loaded, but it does know which methods on that interface are
going to be called.

In such a case, you should configure the types as Conditional Includes. Dotfuscator will include them and figure out that
they implement the interface. If it determines that some of the methods in the interface are unused, it will prune those
methods from the interface, and from all the implementations in the conditionally included types. Methods that weren't
pruned will then be further analyzed for pruning, as usual.

Dotfuscator User's Guide 103

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.5.6.2 The Include Triggers Tab
The Include Triggers tab allows you to graphically specify all the methods that are to be used as application entry points
("triggers") for the pruning process.

You may include specific methods as entry points by browsing the tree view of your application and checking the items
you want to include. In addition, you may visually create your own custom rules for selecting multiple methods for
inclusion.

To help you fine-tune your inclusion rules, you can preview their effects at any time. The application tree view shades all
items selected for inclusion. You can preview the cumulative effects of all rules, or preview a specific rule that you select.

See the section on The Rules Editing Interface for detailed information about working with Inclusion and Exclusion Rules.

2.5.6.3 The Conditional Includes Tab
The Conditional Includes tab allows you to graphically specify all the types that should be conditionally included in the
pruning process. Please see Understanding Include Triggers and Conditional Includes for a deeper explanation of this
feature.

You may conditionally include specific types by browsing the tree view of your application and checking the items you
want to include. In addition, you may visually create your own custom rules for selecting multiple types for inclusion.

To help you fine-tune your inclusion rules, you can preview their effects at any time. The application tree view shades all
items selected for inclusion. You can preview the cumulative effects of all rules, or preview a specific rule that you select.

See the section on The Rules Editing Interface for detailed information about working with Inclusion and Exclusion Rules.

Dotfuscator User's Guide 104

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.5.6.4 The Built-In Rules Tab
Dotfuscator’s Built-In Rules removal tab displays include trigger rules and conditional inclusion rules defined in
%ProgramData%\PreEmptive Solutions\Common\dotfuscatorReferenceRule_v1.4.xml . These standard rules apply to
specific application types or technologies. Each rule has a description that displays on the form when the rule is selected.
You can apply a built-in rule to your project by checking its checkbox.

2.5.6.5 The Options Tab
The Removal Options tab is used to select the kind of removal you want to occur.

Dotfuscator User's Guide 105

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Selecting Remove only literals (const definitions) will perform pruning only on constant declarations. Selecting
Remove unused metadata and code follows the usual algorithm for determining unused methods and fields and removing
them, as well as pruning constant definitions.

2.5.6.5.1 Constant-Only Pruning
You may encounter situations where you may not wish to configure pruning on an assembly, but still wish to achieve
some of the attack surface and assembly size reduction goals of pruning. In these cases, constant-only pruning is an ideal
compromise. During constant-only pruning, Dotfuscator will only prune constant declarations (const fields) from the
input assemblies. Unused types, methods, and fields will not be discovered, and will be propagated to the output
assembly.

Constant-only pruning is safe to do in many situations where full pruning is not desired. During compilation, .NET
compilers will replace references to const fields in code with the actual values of those fields. The constant declarations
remain in the assembly only to support being referenced by external assemblies or being accessed via reflection. If you do
not need to support these scenarios, it is generally safe to enable constant-only pruning.

2.5.6.6 Removal Report
Dotfuscator generates a removal report in XML format that lists all input assemblies and how each was pruned. Each
assembly listing has a listing of types and their members (methods, fields, properties, etc.) along with an attribute
indicating whether the item was pruned or not. The report also describes how managed resources attached to each
assembly were pruned. At the end, the report provides a statistics section regarding the overall effectiveness of pruning.

The removal report is most useful when converted to HTML, using the default transform (or one of your own). The default
transform produces a browsable, cross referenced report that indicates pruned items in red.

The elements of the removal report are similar to those in the map file. A few things are noteworthy:

The report includes pruning status of: types, methods, fields, properties, and managed resources.
If a type was pruned, then obviously all its members (methods, fields and properties) were pruned.
In type names, nested class names are separated from the parent using the “/” character.
Constructors are named .ctor, while static constructors (a.k.a. static initializers, class constructors, etc) are named
.cctor.

Dotfuscator User's Guide 106

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.5.7 The Linking Editor
The Linking editor provides easy drag and drop functionality that allows you to quickly map your input assemblies to one
or more output assemblies. You can then configure the linker for each output assembly.

For new projects, the default setting for the Linking transform is Disabled.

2.5.7.1 Input Assemblies and Linked Assemblies
To create and configure an output assembly for linking, follow these steps.

Click the Create New Assembly button on the Linked Assemblies toolbar. An entry for your new assembly appears on
the linked assemblies list.
Give your new output assembly a name by typing it in the Output Assembly field in the Linking Details section. You do
not have to type path information; like all output assemblies, it will be written to the destination directory.
Select the assemblies you want to link from the Input Assemblies list and drag them to the new assembly in the Linked
Assemblies list. They will disappear from the Input Assemblies list and appear as child nodes of the new assembly.
Right click on the input assembly that you wish to mark as your prime assembly and select Set Primary Assembly from
the context menu. You can also do this by selecting the prime assembly and using the toolbar button. Prime assemblies
are indicated with a tag icon.
If needed, set the Name Mangling Policy and Entry Points for the new assembly.
Repeat the process for each output assembly you want to create.

You can remove an assembly from the Linked Assemblies list by selecting it and using the delete button on the toolbar or
by pressing the Delete key.

The screenshot below shows an example with multiple linked outputs. First, input assemblies Driver.exe and LibraryC.dll
are linked into out.exe; next, LibraryA.dll and LibraryB.dll are linked into outlib.dll; and last, LibraryE.dll "passes
through" without being linked.

Dotfuscator User's Guide 107

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.5.7.1.1 Prime Assemblies
When you set up linking, you must specify one of the input assemblies as the prime assembly. Dotfuscator applies the
manifest information (e.g. version number, public key, etc.) contained in the prime assembly to the newly created output
assembly.

2.5.7.1.2 Name Mangling
When the linker is merging assemblies, the linker sometimes encounters situations where a name needs to be changed in
order to prevent a naming collision. For example, if two of the input assemblies contain private classes with identical
names then the linker must change one of the names in order to merge the assemblies.

In most cases, Dotfuscator can safely mangle names (when at least one of the original names is not visible outside its
assembly); however, if Dotfuscator sees a case in which there are two visible types with the same name, it cannot safely
mangle either name without guidance. It is only in this case where the name mangling policy is used. The default is to halt
the build with an error message. Other options are to mangle one of the names and issue a warning, or silently mangle
the names.

2.5.7.2 Setting Entry Points
If you need to set an entry point for your linked output assembly, you can use the Select Entry Point dialog by pressing the
Browse button in the linking editor’s Entry Point section.

This dialog shows a graphical view of the all the methods that will be available in the linked output assembly. Checking a
method selects it as an entry point. The dialog will fill in the rest of the information in the Entry Point section.

Dotfuscator User's Guide 108

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.5.7.2.1 Entry Points

Dotfuscator User's Guide 109

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

In .NET, an executable assembly must have a method marked in the metadata as the entry point (typically this method is
called Main, but it can have any name.). This is the method that the CLR calls when the assembly is run. In some cases you
need to specify an entry point for each linked output assembly. The table below summarizes the rules for entry points.

Inputs Output Entry Point Rule

All are EXEs Is an EXE A user specified entry point is required. The linker will remove all entry
points on input assemblies and apply the user specified entry point to
the output assembly.

All are DLLs Is an EXE A user specified entry point is required.

Mixed EXEs
and DLLs

Is an EXE A user specified entry point is required, except if there is only one
input exe; in which case the linker will use its entry point. A user
specified entry point will override the default.

Anything Is a DLL A user specified entry point is not used. The linker will remove all
entry points on inputs.

2.5.8 The PreMark Editor
The PreMark editor allows you to select assemblies for watermarking and to set up the watermark that will be applied to
the selected assemblies.

For new projects, the default setting for the PreMark transform is Disabled.

Selecting Assemblies

The list of input assemblies is displayed on the left. Checking the box in front of an assembly selects it for watermarking.

Watermarking Options

You can choose to encrypt your watermark string before it is applied to your input assemblies. The encryption is based on
a pass phrase that you provide. When you check the Encrypt Using Passphrase box, the passphrase entry text box
becomes enabled and you can then enter your passphrase.

Note: Encryption can increase the size of the watermark that is applied to your input assemblies.

Dotfuscator cannot predict whether an encoded and potentially encrypted watermark string will fit in a given output
assembly. At watermarking time, if the string does not fit, you can tell Dotfuscator what to do via the When Watermark
String is Too Big dropdown. You can select whether it should automatically truncate the watermark string and issue a
warning, or halt the build with an error.

Dotfuscator User's Guide 110

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Character Map

Your watermark string must be encoded to bytes before it is applied to an assembly. Dotfuscator provides several built in
Character Maps that are optimized for small, commonly used, character sets. Using one of them will allow larger
watermark strings to fit in any given assembly. If none of the specialized character maps fit your needs, you can select the
standard UTF-8 encoding.

Watermark String

When entering your watermark string, the user interface will notify you if you type a character that is not included in the
currently selected character map.

2.5.8.1 Watermark String Length
The maximum size of the watermark string is governed by your configuration options and by the complexity of the target
assembly. In general, bigger strings fit in bigger assemblies. Dotfuscator uses character encodings, called character maps,
to minimize the number of bits required to encode a character; a small character encoding allows you to create a longer
watermark string for a given assembly.

In addition, the encryption algorithm has a fixed block size. If you choose to encrypt the watermark string, the maximum
length of your watermark string may be smaller than it is without encryption.

It is not possible for Dotfuscator to predict the maximum watermark string length until the output assemblies have been
generated. You can tell Dotfuscator what to do during a build when your watermark string will not fit in the output
assembly. The default setting truncates the string so it fits and prints a warning message to the output window. You can
also tell Dotfuscator to stop the build with an error. In both cases, the message indicates the maximum watermark size.

Dotfuscator User's Guide 111

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.5.8.2 Character Maps
Dotfuscator defines several character maps you can use to encode your watermark string. If space is an issue, you can
choose a smaller encoding at the expense of the number of different characters you can use in your string.

Name Description Bits/Character

4bit-a 4 bit Hexadecimal 4

6bit-a 6 bit Uppercase Alphanumeric and symbols 6

6bit-b 6 bit Alphanumeric 6

7bit-a 7 bit Alphanumeric and symbols 7

UTF-8 Any character variable

Dotfuscator’s user interface displays the specific characters defined in each character map.

2.5.8.3 Extracting a Watermark
Dotfuscator ships with a command line tool called premark that accepts an assembly as input and outputs the watermark
if any. The tool is installed into the same directory as Dotfuscator

Extracting a Watermark

premark [options] assembly1[,assembly2, ...]

assembly1,...: A list of .NET assemblies or modules.

Options:
/a Ask for passphrase.
/p=passphrase Passphrase to use when decrypting watermark string
 (none for no encryption).

In addition, there is an MSBuild task defined for extracting a watermark. See PreMark Task.

2.5.9 The Rules Editing Interface
The Dotfuscator Graphical User Interface uses a common interface to graphically specify rules for including and excluding
elements in your application. The rules editing interface is used to set rules for the following operations:

Renaming exclusion rules
Control Flow exclusion rules
String Encryption inclusion rules

Dotfuscator User's Guide 112

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Removal Trigger Method selection rules
Removal Conditional Includes selection rules

This section explains how to get the most out of the rules editing interface.

There are two methods of creating rules. The first is by checking individual elements in the application tree view. By doing
this, you generate a simple rule that selects that particular element. The second method is by adding “nodes” to the rule
editing view. This type of rule is more powerful and customizable. You can use regular expressions and other selection
criteria, based on the type of rule. This method also provides ways to preview the items selected by each rule.

2.5.9.1 Selecting Individual Elements
You can create selection rules for individual elements by simply checking the box next to the item in the application tree
view. You can check assemblies, modules, types, methods, and fields in this manner.

Assemblies

The top-most nodes in the application tree view represent the packages or assemblies. If you check an assembly node, all
child nodes become checked. This reflects the fact that selecting an assembly means that you are selecting all items
contained in that assembly: modules, types, and their members.

Modules

The nodes immediately below an assembly node in the application tree view represent the modules that make up the
assembly (in most cases there is one module per assembly). If you check a module node, all child nodes become checked.
This reflects the fact that selecting a module means selecting all items contained in that module: “global” methods and
fields, types, and their members.

Dotfuscator User's Guide 113

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Namespaces

Namespace nodes are child nodes of module nodes in the application tree view. If you check a namespace node, all child
nodes become checked. This reflects the fact that selecting a namespace means selecting all items contained in that
namespace: types and their members.

Dotfuscator User's Guide 114

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Types

Type nodes appear under module or namespace nodes. Nested types are represented at this same level, with a name
prefixed with the parent type name(s) delimited with the ‘/’ character. If you check a type node, one of two things
happens, depending on what type of rule you are creating.

If you are creating a renaming exclusion rule, child nodes remain unchecked. This reflects the fact that types are selected
independently of their members for renaming exclusion rules. Checking a type node will generate a rule that excludes just
the type name from renaming.

If you are specifying any other kind of rule, all child nodes will also become checked. This reflects the fact that in these
cases, selecting a type means that you are in fact selecting all members defined by that type.

Dotfuscator User's Guide 115

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Members

Members can be methods, fields, properties, or events. Member nodes can appear under module nodes in the case of
"global" members; more commonly, they appear under type nodes. Checking a member node will generate a rule that
selects that member.

2.5.9.2 Creating Custom Rules

Dotfuscator User's Guide 116

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

You can create custom rules by adding nodes to the rule editing view. Depending on the type of rule, you can attach
regular expressions and/or other selection criteria to the rule. Once the rule is configured, you can preview its effects by
right clicking on the node and selecting Preview from the menu. Items selected by the rule will be shaded in the
application tree view. Each type of rule is covered in the following sections.

2.5.9.2.1 Selecting By Namespace
A namespace rule will select all types and their members in matching namespaces.

Namespace Name

You create a namespace rule by clicking the Add Namespace button, then typing a name in the Name field. The name
will be interpreted as a regular expression if the Regular Expression checkbox is checked; otherwise the name will be
interpreted literally (and thus will match at most one namespace).

Namespace Rule Node

The corresponding node displayed in the rule editing view has a child element that indicates whether the rule is a regular
expression. You can preview the items selected by the rule by right clicking on the node and selecting the preview option
from the menu.

2.5.9.2.2 Selecting By Type
A type rule will select differently depending on what type of rule you are creating.

If you are creating a renaming exclusion rule, the rule will select just the type name for exclusion (provided the
ExcludeType checkbox is checked), leaving members alone.

Dotfuscator User's Guide 117

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

If you are specifying any other kind of rule, the rule will select zero or more types and all their members. This reflects the
fact that in these cases, selecting a type means that you are in fact selecting all members defined by that type.

Type Name

You create a type rule by clicking the Add Type button, then typing a name in the Name field. The name will be
interpreted as a regular expression if the Regular Expression checkbox is checked; otherwise the name will be interpreted
literally. The name must be a fully qualified type name that includes the namespace and parent class information if it is a
nested type.

Type Attribute Specifier

In addition to type name, you can also select based on type attribute specifiers, using the values provided in the "Spec" list
box. A ‘-‘ preceding an attribute specifier negates the attribute (i.e. it selects all types that do not have the specified
attribute). You can select multiple attributes from the list; the criteria implied by multiple selections are logically AND-ed
together. For example, you can select types that are both public and abstract by selecting +public and +abstract from
the list.

The attribute specifications are logically AND-ed with the type name, so if you want to select all types with a specific set of
attributes, you need to provide a regular expression for the type name that selects all types (i.e. ".*").

Exclude Type Checkbox

The Exclude Type checkbox is only active if you are working with renaming exclusion rules. If checked, the rule will
exclude the names of matching types from renaming and allow you to provide additional rules for selecting members of
matching types. If left unchecked, the rule will still select matching types for the purposes of applying rules to members of
the types, but it will not select the type name. In this manner, you can write renaming exclusion rules that exclude
methods and fields, but allow type names to be obfuscated.

Apply to Derived Types Checkbox

The Apply to Derived Types checkbox is only active if you are working with renaming or pruning rules. If checked, the
rule will additionally exclude the child classes of matching types from renaming or pruning. In this manner, you can write
renaming exclusion rules that exclude entire inheritance hierarchies.

Type Rule Node

The corresponding node displayed in the rule editing view has a child element that indicates whether the rule is a regular
expression and whether the rule has attribute specifiers associated with it. You can preview the types selected by the rule
by right clicking on the node and selecting the Preview option from the menu.

Dotfuscator User's Guide 118

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

In the screen shot, a type rule is defined that selects the names of all concrete (not abstract) types for exclusion from
renaming.

2.5.9.2.3 Selecting By Method
Method rules are qualified by type rules, so they appear in the rules view as children of type nodes. A method rule will
select all methods (in all types matched by the parent type rule) that match your criteria. Supported matching criteria
include method name, method attributes, and signature.

Method Name

You create a method rule by right clicking on the parent type rule’s node and selecting Add Method, then typing a name
in the Name field. The name will be interpreted as a regular expression if the Regular Expression checkbox is checked;
otherwise the name will be interpreted literally.

Method Attribute Specifier

In addition to method name, you can also select based on method attribute specifiers, using the values provided in the
Attribute Specifier list box. A ‘-‘ preceding an attribute specifier negates the attribute (i.e. it selects all methods that do not
have the specified attribute). You can select multiple attributes from the list; the criteria implied by multiple selections are
logically AND-ed together (that is, the set of selected methods is the intersection of all methods that match each attribute
specifier.). For example, you can select methods that are both public and virtual by selecting +public and +virtual from
the list.

The attribute specifications are logically AND-ed with the method name and signature list, so if you want to select all
methods with a specific set of attributes, you need to provide a regular expression for the method name that selects all
methods (i.e. ".*").

Dotfuscator User's Guide 119

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Method Signature

You can also select methods by signature. A signature specifies both the return type and the parameter types of the
method. The method signature reduces the scope of the method rule, so if you want to create a rule that selects methods
regardless of signature, you need to provide a regular expression for the signature that selects all signatures (i.e. ".*"). This
is the default value.

Method Rule Node

The corresponding method node displayed in the rule editing view has a child element that indicates whether the rule is a
regular expression and whether the rule has attribute specifiers, and/or a signature associated with it. You can preview the
items selected by the rule by right clicking on the node and selecting the Preview option from the menu.

In the screen shot, a method rule is defined that selects the names of all public methods (in all types) whose names start
with "S".

2.5.9.2.4 Selecting By Field
Field rules are qualified by type rules, so they appear in the rules view as children of type nodes. A field rule will select all
fields (in all types matched by the parent type rule) that match your criteria. Supported matching criteria include field
name and field attributes.

Field Name

You create a field rule by right clicking on the parent type rule’s node and selecting Add Field, then typing a name in the
Name field. The name will be interpreted as a regular expression if the Regular Expression checkbox is checked;
otherwise the name will be interpreted literally.

Dotfuscator User's Guide 120

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Field Attribute Specifier

In addition to field name, you can also select based on field attribute specifiers, using the values provided in the Attribute
Specifier list box. A ‘-‘ preceding an attribute specifier negates the attribute (i.e. it selects all fields that do not have the
specified attribute). You can select multiple attributes from the list; the criteria implied by multiple selections are logically
AND-ed together (that is, the set of selected fields is the intersection of all fields that match each attribute specifier.). For
example, you can select fields that are both public and static by selecting +public and +static from the list.

The attribute specifications are logically AND-ed with the field name, so if you want to select all fields with a specific set of
attributes, you need to provide a regular expression for the field name that selects all fields (i.e. ".*").

Field Signature

You can also select fields by signature. A signature specifies the type of the field. The field signature reduces the scope of
the field rule, so if you want to create a rule that selects fields regardless of type, you need to provide a regular expression
for the signature that selects all signatures (i.e. ".*"). This is the default value.

Field Rule Node

The corresponding field node displayed in the rule editing view has a child element that indicates whether the rule is a
regular expression and whether the rule has attribute specifiers, and/or a signature associated with it. You can preview the
fields selected by the rule by right clicking on the node and selecting the Preview option from the menu.

In the screen shot, a field rule is defined that selects the names of all fields (in all types) with names that start with “my”.

2.5.9.2.5 Selecting By Property
Property rules are qualified by type rules, so they appear in the rules view as children of type nodes. A property rule will
select all properties (in all types matched by the parent type rule) that match your criteria. Supported matching criteria
include property name and property attributes.

Dotfuscator User's Guide 121

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Property Name

You create a property rule by right clicking on the parent type rule’s node and selecting Add Property, then typing a
name in the Name field. The name will be interpreted as a regular expression if the Regular Expression checkbox is
checked; otherwise the name will be interpreted literally.

Property Attribute Specifier

In addition to property name, you can also select based on property attribute specifiers, using the values provided in the
Attribute Specifier list box. A ‘-‘ preceding an attribute specifier negates the attribute (i.e. it selects all properties that do
not have the specified attribute). You can select multiple attributes from the list; the criteria implied by multiple selections
are logically AND-ed together (that is, the set of selected properties is the intersection of all methods that match each
attribute specifier.). For example, you can select properties that are both public and virtual by selecting +public and
+virtual from the list.

The attribute specifications are logically AND-ed with the property’s name and signature list, so if you want to select all
properties with a specific set of attributes, you need to provide a regular expression for the property name that selects all
properties (i.e. “.*”).

Property Rule Node

The corresponding property node displayed in the rule editing view has a child element that indicates whether the rule is
a regular expression and whether the rule has attribute specifiers. You can preview the items selected by the rule by right
clicking on the node and selecting the Preview option from the menu.

In the screen shot, a property rule is defined that selects the names of all public properties (in all types) whose names start
with "C".

2.5.9.2.6 Selecting By Event

Dotfuscator User's Guide 122

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Event rules are qualified by type rules, so they appear in the rules view as children of type nodes. An event rule will select
all events (in all types matched by the parent type rule) that match your criteria. Supported matching criteria include event
name and event attributes.

Event Name

You create a event rule by right clicking on the parent type rule’s node and selecting Add Event, then typing a name in
the Name field. The name will be interpreted as a regular expression if the Regular Expression checkbox is checked;
otherwise the name will be interpreted literally.

Event Attribute Specifier

In addition to event name, you can also select based on event attribute specifiers, using the values provided in the
Attribute Specifier list box. A ‘-‘ preceding an attribute specifier negates the attribute (i.e. it selects all events that do not
have the specified attribute). You can select multiple attributes from the list; the criteria implied by multiple selections are
logically AND-ed together (that is, the set of selected events is the intersection of all events that match each attribute
specifier.). For example, you can select events that are both public and static by selecting +public and +static from the
list.

The attribute specifications are logically AND-ed with the event name, so if you want to select all events with a specific set
of attributes, you need to provide a regular expression for the event name that selects all events (i.e. ".*").

Event Rule Node

The corresponding event node displayed in the rule editing view has a child element that indicates whether the rule is a
regular expression and whether the rule has attribute specifiers. You can preview the events selected by the rule by right
clicking on the node and selecting the Preview option from the menu.

In the screen shot, an event rule is defined that selects the names of all events (in all types) with names that start with "G".

2.5.9.2.7 Selecting By Custom Attribute

Dotfuscator User's Guide 123

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Custom attribute rules are qualified by type, method, field, property, or event rules, so they appear in the rules view as
children of type, method, field, property, or event nodes. A custom attribute rule will select all items selected by the parent
node that are also annotated with a matching custom attribute.

Custom Attribute Name

You create a custom attribute rule by right clicking on the parent type, method, field, property, or event rule’s node and
selecting Add Custom Attribute, then typing a name in the Name field. The name will be interpreted as a regular
expression if the Regular Expression checkbox is checked; otherwise the name will be interpreted literally.

Allow Inheritance Checkbox

The Allow Inheritance checkbox controls how the custom attribute rule is applied to inheritance hierarchies. If checked,
the rule will additionally exclude overriding methods, properties, events, and sub types.

Custom Attribute Rule Node

The corresponding custom attribute node displayed in the rule editing view has a child element that indicates whether the
rule is a regular expression. You can preview the types, methods, fields, properties, or events selected by the rule by right
clicking on the node and selecting the Preview option from the menu.

In the screen shot, a custom attribute rule is defined that selects all methods that are annotated with a custom attribute
named GettingStarted.TestNamedAttribute.

2.5.9.2.8 Selecting By Supertype
Supertype rules are qualified by type rules, so they appear in the rules view as children of type nodes. A supertype rule will
narrow the scope of a type rule so that only types matched by the parent type rule that also derive from the specified
supertype are selected.

Dotfuscator User's Guide 124

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Supertype Name

You create a supertype rule by right clicking on the parent type rule’s node and selecting Add Supertype, then typing a
name in the Name field. The name will be interpreted as a regular expression if the Regular Expression checkbox is
checked; otherwise the name will be interpreted literally.

Supertype Rule Node

The corresponding supertype node displayed in the rule editing view has a child element that indicates whether the rule is
a regular expression. You can preview the types selected by the rule by right clicking on the node and selecting the
Preview option from the menu.

In the screen shot, a supertype rule is defined that selects all types that are supertypes of System.Attribute.

2.5.9.3 Editing and Deleting Rules
To edit an existing rule, simply click on the rule in the rule editing view. You can then use controls below the view to edit
the values associated with the node (e.g. name, attribute specifier list, etc.).

To delete a rule, click on the rule in the rule editing view, and press the Delete button.

2.5.9.4 Using Declarative Obfuscation with Rules
The rules editor provides support for Declarative Obfuscation by displaying the arguments of all obfuscation attributes
(i.e. System.Reflection.ObfuscateAssemblyAttribute and System.Reflection.ObfuscationAttribute)
in the application tree view. Items in the application tree view (types, methods, fields) that are selected by an obfuscation
attribute appear in blue.

Dotfuscator User's Guide 125

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

In the screenshot below, the methods of Class1 and Class2 are marked as removal triggers using
ObfuscationAttributes. Each attribute's properties and values are expanded in the view.

2.5.9.5 Previewing Rules
To preview the effects of a single rule in the rule editing view, right click on the rule’s node and select Preview from the
menu. Items selected by the rule will appear shaded in the application tree view.

Dotfuscator User's Guide 126

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

To preview the combined effects of all the rules defined in the rule editing view, click on the Preview button. All items
selected by applying all the rules will appear shaded in the application tree view.

2.5.10 Instrumentation (Tamper, Shelf Life, Exception,
Analytics)

The Instrumentation Tab allows you to add, edit, and review the custom attributes that configure Dotfuscator's code-
injection features (called Instrumentation). Those features include:

Shelf Life
Tamper Notification
Exception Tracking
PreEmptive Analytics

For new projects, the default setting for the Instrumentation transform is Enabled.

Supported custom attributes already in your source code can be edited through the user interface. Changes are persisted
to the Dotfuscator configuration file and take precedence over the attributes in source code.

Extended custom attributes can also be added and edited through the user interface. Dotfuscator treats extended
attributes the same as it treats custom attributes embedded in the source code.

You can also map supported attributes (even attributes embedded in code) to a particular supported code transform. This
supports attribute overloading, wherein the same set of attributes can drive multiple transforms (e.g. Application
Analytics).

To add an attribute, navigate to the method or assembly you wish to place the attribute on and select it. If the attribute
has arguments, you will be able to set them in the instrumentation editor.

Dotfuscator User's Guide 127

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Checking the Analytics checkbox in the Transforms to trigger off the attribute: section instruments the attributed method
as a feature to be tracked with PreEmptive Analytics.

Custom Endpoint

In the Attribute Editor for the SetupAttribute, the StaticEndpoint field is where you explicitly specify the endpoint for
PreEmptive Analytics messages. If no custom endpoint is selected, PreEmptive's Commercial Runtime Intelligence Services
endpoint will be used. Click the "..." (ellipses) in the StaticEndpoint field to invoke the Select Endpoint window:

Here you are able to specify what endpoint you wish to send to. Once you've made your selection and clicked OK, the
location displays in the StaticEndpoint field:

Dotfuscator User's Guide 128

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Attribute Search Field

The Instrumentation tab is enabled with a Find feature that enables you to easily locate any item in the instrumentation
tree view. You may type the full name or the first few letters of any item you wish to find in the Select the attribute to
modify: field then click Find. You may also search for an item by typing .* (the wildcard) after the first few letters of the
name, or you may enter a Regular Expression. Dotfuscator will select the first item where your search term appears.
Clicking on the Find button will select the next match for your search term. Please note that since the search matches the
beginning of an item's name, when searching for instrumentation attributes you will need to search using the full name of
the attribute. For example, to find a setup attribute, enter PreEmptive.Attributes.SetupAttribute.

Dotfuscator User's Guide 129

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.5.10.1 Shelf Life Token Overview
Shelf Life is an application inventory management function that allows you to embed expiration and notification logic into
an application. Dotfuscator injects code that reacts to application expiration by exiting the application and/or sending
a PreEmptive Analytics message. This feature is particularly helpful with beta applications. Users can schedule an
application’s expiration/de-activation for a specific date and optionally issue warnings to users that the application will
expire/de-activate in a specific number of days.

A Shelf Life Token is an encrypted set of data containing application and expiration information that is injected into the
application binary at obfuscation time, or it can be stored as a string outside of the application binary so that it can be
updated to extend the expiration date.

Using a Private Key File and password is an option that provides additional defense in depth of a Shelf Life token by
signing the token data with the user provided private key. Only the necessary public key information necessary to provide
signature validation is stored in the Shelf Life Token.

There are two methods of providing the Shelf Life Token to the Shelf Life runtime code that is injected into the
application. The default method is for Dotfuscator to directly embed the encrypted data into the binary during the
obfuscation process. An alternative method is for the application developer to provide for their own persistence of the
Shelf Life Token data and to provide a string representation of that Shelf Life Token data to the injected runtime code via
custom methods, properties, etc. as set in the ShelfLifeTokenSource properties. The advantage of persisting the Shelf Life
Token data outside of the binary allows for easier extensions of expiration dates without distributing a newly instrumented
binary but, it does so at the cost of making the Shelf Life Token Data more visible to the end user.

2.5.10.1.1 Shelf Life Activation Key Overview
A Shelf Life Activation Key (SLAK) is a data file that is required to inject Shelf Life functionality into Dotfuscator and into
the appropriate locations within an application that you want to instrument.

A Shelf Life Activation Key is issued by PreEmptive and provided to Dotfuscator by the user during shelf life configuration.
To obtain a Shelf Life Activation Key, contact PreEmptive Solutions. PreEmptive will issue you a data file containing the
Shelf Life Activation Key that is to be stored on your Build Machine.

Once the Shelf Life Activation Key is obtained, you can add the Shelf Life Attribute to a method or group of methods. In
the Instrumentation tab in the Attribute Editor: section, in the ActivationKeyFile field you must select the path to the Shelf
Life Activation Key file, thereby activating Shelf Life within your application.

2.5.10.1.2 Expiration and Warning Actions
Users can specify what action results when expiration or warning occur via configuration or custom attribute. If the user
selects the default action, the application exits upon expiration and takes no action during the warning period. The
InsertShelfLife attribute can be used to inject code to perform a call back to a user-specified method when a Shelf
Life warning or expiration occurs.

Dotfuscator User's Guide 130

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Expiration Notification

To accomplish this, the InsertShelfLife attribute is used to specify an ExpirationNotificationSink, which
Dotfuscator uses to generate code that communicates the results of the shelf life expiration check back to the application.
The ExpirationNotificationSink may be a writeable boolean valued property or field, or it may be a method or
delegate with the signature void(bool) or void(string,string). After a shelf life expiration check, the generated
code sets the boolean value to true if the application is expired; false if not. If using a method or delegate sink with a
void(string,string) signature, the generated code will call this sink and will pass in the warning date and the
expiration date as the string arguments, in that order. The application is free to react in any way in response to a shelf life
expiration notification. The InsertShelfLife attribute defines three properties for specifying an
ExpirationNotificationSink:

ExpirationNotificationSinkElement.
ExpirationNotificationSinkOwner.
ExpirationNotificationSinkName.

These properties are described in detail in the InsertShelfLifeAttribute section of the custom attribute reference.

The expiration notification sink settings are optional. If they are omitted, the application is not notified when the
expiration check is executed.

If the ExpirationNotificationSinkElement is set to DefaultAction, Dotfuscator injects code that exits the
application if shelf life expiration is detected.

Warning Notification

To accomplish this, the InsertShelfLife attribute is used to specify a WarningNotificationSink, which
Dotfuscator uses to generate code that communicates the results of the shelf life warning check back to the application.
The WarningNotificationSink may be a writeable boolean valued property or field, or it may be a method or
delegate with the signature void(bool) or void(string,string). After a shelf life warning check, the generated
code sets the boolean value to true if the application is in its warning period; false if it is not. If using a method or
delegate sink with a void(string,string) signature, the generated code will call this sink and will pass in the warning
date and the expiration date as the string arguments, in that order. The application is free to react in any way in response
to a shelf life warning notification. The InsertShelfLife attribute defines three properties for specifying a
WarningNotificationSink:

WarningNotificationSinkElement.
WarningNotificationSinkOwner.
WarningNotificationSinkName.

These properties are described in detail in the InsertShelfLifeAttribute section of the custom attribute reference.

The warning notification sink settings are optional. If they are omitted, the application is not notified when the warning
check is executed.

Dotfuscator User's Guide 131

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

If the WarningNotificationSinkElement is set to DefaultAction, Dotfuscator does not inject any code to handle
the warning notification.

Sample InsertShelfLife attribute usage with ExpirationNotificationSink and WarningNotificationSink
as instance fields defined in the same class as the attributed method:

InsertShelfLife Attribute Usage with WarningNotificationSink and ExpirationNotificationSink

class ShelfLifeSample {
 bool instanceShelfLifeExpirationFlag;

 [PreEmptive.Attributes.InsertShelfLife(
 ActivationKeyFile = "C:\\shelflife.slkey",
 ExpirationDate = "2009-11-05",
 ExpirationNotificationSinkElement = SinkElements.Field,
 ExpirationNotificationSinkName = "instanceShelfLifeExpirationFlag",
 WarningDate = "2009-07-04",
 WarningNotificationSinkElement = SinkElements.Method,
 WarningNotificationSinkName = "CheckShelfLifeWarning"
)]
 private void Verify() {
 // Dotfuscator will add Shelf Life expiration and warning detection and
notification code here
 }
 private CheckShelfLifeExpirationState() {
 if (instanceShelfLifeExpirationFlag) {
 // app has expired
 }
 else {
 // app has not expired
 }
 }
 private CheckShelfLifeWarning(string warnDate, string expDate) {
 // use date strings directly
 Console.WriteLine("MyApp expires on " + expDate);

 // or parse to datetime to do calculations
 int daysLeft = DateTime.Parse(expDate).Subtract(DateTime.Now);
 Console.WriteLine("MyApp will expire in " + daysLeft + " days");
 }
}

2.5.10.1.3 Expiration and Warning Reporting

Dotfuscator User's Guide 132

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The injected Shelf Life code can send messages to a PreEmptive Analytics Endpoint when the warning period is entered or
expiration has occurred. To enable this feature, turn on Send Shelf Life Messages in the Global Options section of the
Settings tab.

To detect Shelf Life expiration, place InsertShelfLife attributes on one or more methods in the application that are
always executed. When Dotfuscator encounters an InsertShelfLife attribute during its processing, it adds code that
performs expiration detection at runtime. If the current date is on or after than the embedded expiration date then a Shelf
Life expiration message is sent to a PreEmptive Analytics Endpoint.

Dotfuscator also allows you to optionally specify a warning period that will occur prior to the application's expiration. If
the current date is on or after than the embedded warning date then a Shelf Life warning message is sent to a PreEmptive
Analytics Endpoint.

InsertShelfLife attributes are not required at runtime; therefore, Dotfuscator strips them from the output application.

An application can contain any number of InsertShelfLife attributes. In the event that an application has expired or
is about to expire, multiple shelf life messages from the same application session will be sent with the same Shelf Life ID.

Do not put this attribute on the same method containing the Setup Attribute. Methods with this attribute must be
executed after the method containing the Setup Attribute.

InsertShelfLife Attribute

[PreEmptive.Attributes.InsertShelfLife(
 ActivationKeyFile = "C:\\shelflife.slkey",
 ExpirationDate = "2009-11-05"
)]
public void DoStuff() { ... }

Note: A Shelf Life Activation Key (SLAK) must be purchased separately in order to use this functionality.

2.5.10.1.4 Generate New Shelf Life Token
When using Shelf Life with a Shelf Life Token Source Dotfuscator allows you to generate new Shelf Life Tokens easily by
clicking View > Generate New Shelf Life Token... in the menu bar of Visual Studio, or by clicking Tools > Generate
Shelf Life Token... in Dotfuscator.

Within the dialog box that displays, you can browse to and select the appropriate Shelf Life Activation Key file and
optionally, a PKCS #12 Private Key file to provide additional validation of the Shelf Life token. When using a private key
file, enter the correct password in the Private Key File Password field. Set the Expiration Date and optionally set
the Warning Date. Next to the Warning Date field is the Use Warning Date checkbox. Clear this check box if you did not
enable Warning Date behavior using the InsertShelfLifeAttribute during instrumentation, or if you enabled it during
instrumentation but wish to provide an updated shelf life token that disables it.

Dotfuscator User's Guide 133

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

When the Shelf Life Key information is determined to be correct, the Generate button is activated and ready to be clicked.
Clicking this button generates a new Shelf Life Token that can be used by a Shelf Life instrumented application via the
ShelfLifeTokenSource properties of the InsertShelfLifeAttribute. The Shelf Life Token Data can be copied to the clipboard
by clicking the Copy button.

2.5.10.2 Tamper Notification
Dotfuscator can instrument applications to detect if they have been tampered with and if so, optionally send a message to
a PreEmptive Analytics Endpoint.

When run on a properly attributed .NET application, Dotfuscator processes the Tamper Notification attributes and
instruments the application accordingly. The resulting output application will be ready to send Tamper Notifications to a
PreEmptive Analytics Endpoint. The only differences between Tamper Notification and Application Analytics at this level
are in the attributes.

Tamper Notification Message Type

Tamper Notification defines one message type:

Tamper Detected

The PreEmptive Analytics Service defines a Tamper Detected message. An application sends this message when it
determines that it has been modified since being run through Dotfuscator. To have your application send these messages,
you must:

Attribute your application with PreEmptive Analytics attributes, including Setup and Teardown.
Add InsertTamperCheck attributes to methods where you would like application integrity checks to be performed.

Dotfuscator User's Guide 134

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Run your application through Dotfuscator with the “Send Tamper Messages” option turned on. See Configuring and
Running Dotfuscator with Application Analytics.

See Example PreEmptive Analytics Enabled Application to see the contents of messages containing PreEmptive
Analytics data.

2.5.10.2.1 Tamper Reporting
To detect tampering, place InsertTamperCheck attributes on one or more methods in the application that are always
executed. When Dotfuscator encounters an InsertTamperCheck attribute during its processing, it adds code that
performs an assembly level integrity check at runtime. If the integrity check fails, it sends a tamper detected message to a
PreEmptive Analytics Endpoint. It also calls code that exits the application or any other application defined code (see
Tamper Actions). InsertTamperCheck attributes are not required at runtime; therefore, Dotfuscator strips them from
the output application.

An application can contain any number of InsertTamperCheck attributes. In the event that an application has been
tampered with, multiple tamper detected messages from the same application session will be sent with the same group
Id.

Do not put this attribute on the same method containing the Setup Attribute. Methods with this attribute must be
executed after the method containing the Setup Attribute.

InsertTamperCheck Attribute

[PreEmptive.Attributes.InsertTamperCheck()]
public void DoStuff() { ... }

2.5.10.2.2 Tamper Actions
In addition to sending tamper notifications to the managed service, the InsertTamperCheck attribute can be used to
inject code that gets executed during the tamper verification.

Application Notification

To accomplish this, the InsertTamperCheck attribute is used to specify an ApplicationNotificationSink, which
Dotfuscator uses to generate code that communicates the results of the tamper check back to the application. The
ApplicationNotificationSink may be a writeable boolean valued property or field, or it may be a method or
delegate with the signature void(bool). After a tamper check, the generated code sets the boolean value to true if the
application has been tampered with; false if not. The application is free to react in any way in response to a tamper
notification.

The InsertTamperCheck attribute defines three properties for specifying an ApplicationNotificationSink:

ApplicationNotificationSinkElement.

Dotfuscator User's Guide 135

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

ApplicationNotificationSinkOwner.
ApplicationNotificationSinkName.

These properties are described in detail in the InsertTamperCheckAttribute section of the custom attribute reference.

The application notification sink settings are optional. If they are omitted, the application is not notified when the tamper
check is executed.

If the ApplicationNotificationSinkElement is set to DefaultAction, Dotfuscator injects code that exits the
application if tampering is detected.

Sample InsertTamperCheck attribute usage with ApplicationNotificationSink as an instance field defined in
the same class as the attributed method:

InsertTamperCheck Attribute Usage with ApplicationNotificationSink

class TamperSample {
 bool instanceTamperFlag;

 [PreEmptive.Attributes.InsertTamperCheck(
 ApplicationNotificationSinkElement = SinkElements.Field,
 ApplicationNotificationSinkName = "instanceTamperFlag"
)]
 private void Verify() {
 // Dotfuscator will add Tamper detection and notification code here
 }
 private CheckTamperState() {
 if (instanceTamperFlag) {
 // app has been tampered with
 }
 else {
 // app has not been tampered with
 }
 }
}

2.5.10.2.3 Simulating Tampering
Dotfuscator ships with a simple command line utility that ‘tampers’ with an assembly. It is called TamperTester.exe and is
installed in the same folder as Dotfuscator itself.

TamperTester.exe

Usage: tampertester <file_name> [destination folder]

Dotfuscator User's Guide 136

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

By running your Dotfuscator assemblies through this utility, you can test that the tamper notification messages are being
generated and sent as expected. You can also test any application code you have written to execute in response to tamper
detection.

2.5.10.3 Exception Tracking
This section documents the development process when using Exception Tracking. It describes the Dotfuscator user
interface and configuration options that relate to Exception Tracking.

2.5.10.3.1 Exception Reporting
To detect exceptions that occur within a method, place ExceptionTrack attributes on the method. To detect exceptions
that occur anywhere in an assembly, place ExceptionTrack attributes on the assembly.

When Dotfuscator encounters an ExceptionTrack attribute during its processing, it adds code that detects exceptions
of the configured type:

Caught: Dotfuscator will inject code that tracks exceptions right after they enter a 'catch' block.
Thrown: Dotfuscator will inject code that tracks exceptions right before being thrown by a 'throw' statement.
Unhandled (default): Dotfuscator will inject code that tracks exceptions either at the method level by wrapping the
method in a try/catch block and re-throwing the exception, or at the assembly level by registering an
UnhandledException event handler on the current AppDomain (for .NET Framework applications) or current Application
(for Silverlight applications).

Once an exception is detected, it can be reported to the configured PreEmptive Analytics endpoint by setting the
SendReport property of the ExceptionTrack attribute to true (the default).

Dotfuscator can also be configured to obtain information from the user such as a description of the actions leading to the
exception and a contact address that the developer can use to solicit additional information or provide notification of an
issue that has been fixed. This information will be attached to the exception report message. To obtain this type of user-
provided information, specify a ReportInfoSource. For more information on configuring a ReportInfoSource, see
Collecting User-specified Exception Report Information.

The sending of exception reports will honor the opt-in setting of the user if an OptInSource has been configured.

Dotfuscator can be configured to obtain explicit consent from the user to send the exception report message. In this case,
the user's explicit consent will override the PreEmptive Analytics opt-in setting if one has been configured. To obtain
explicit consent to send the exception report message, specify a ReportInfoSource. For more information on
configuring a ReportInfoSource, see Collecting User-specified Exception Report Information.

The report info source settings are optional. If they are omitted, no user-provided information will be collected, and the
sending of the exception report messages will be controlled by the PreEmptive Analytics opt-in setting.

Dotfuscator User's Guide 137

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.5.10.3.2 Exception Actions
In addition to sending exception report messages to the managed service, the ExceptionTrack attribute can be used
to inject code to perform a call back to a user-specified method when an exception is detected.

Exception Notification

To accomplish this, the ExceptionTrack attribute is used to specify an ExceptionNotificationSink, which
Dotfuscator uses to generate code that forwards the detected Exception object back to the application. The
ExceptionNotificationSink may be a writable field or settable property of type System.Exception, or it may be a
method or delegate with the signature void(System.Exception). After an exception is detected, the generated code
sets the field or property value to the Exception object that was captured. If using a method or delegate sink, the
generated code will call this sink with the captured Exception object as the only parameter. The application is free to react
in any way in response to a detected exception. The ExceptionTrack attribute defines three properties for specifying
an ExceptionNotificationSink:

ExceptionNotificationSinkElement.
ExceptionNotificationSinkOwner.
ExceptionNotificationSinkName.

These properties are described in detail in the ExceptionTrack section of the custom attribute reference.

The exception notification sink settings are optional. If they are omitted, no custom action will occur when an exception of
the configured type is detected.

Sample ExceptionTrack attribute usage with ExceptionNotificationSink as method defined in the same class as
the attributed method:

ExceptionTrack usage with ExceptionNotificationSink as method

[ExceptionTrack(
 ExceptionNotificationSinkElement = SinkElements.Method,
 ExceptionNotificationSinkName = "Response"
)]
private void Foo() {
 ...
}

// Respond to a detected exception
public void Response(System.Exception e) {
 ...
}

Dotfuscator User's Guide 138

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.5.10.3.3 Collecting User-specified Exception Report
Information

When using Exception Tracking, Dotfuscator can be configured to obtain explicit user consent and to collect comment
and contact information from the user. These are provided in the form of key-value pairs that are read at runtime during
the construction of an exception report message.

To provide this user-specified report information, specify a ReportInfoSource on the attribute corresponding to the
message you wish to send.

Dotfuscator uses the ReportInfoSource to generate code that gathers the key-value pairs at runtime. The
ReportInfoSource is an IDictionary or IDictionary<string,string> valued property, method, field, or when
using method-level exception tracking, method argument; it is the developer's responsibility to ensure that a correct
values are available in the ReportInfoSource at the time the an exception is detected.

Using the Built-in Exception Report Dialog as the ReportInfoSource

Dotfuscator can inject a pre-made Exception Report Dialog to ease configuration for most scenarios and provide a
consistent user experience for exception reporting. To use the built-in dialog, your assembly must target version 1.1 (or
higher) of the .NET Framework, or Silverlight version 2 (or higher). To instruct Dotfuscator to use the built-in dialog as the
ReportInfoSource, set the ReportInfoSourceElement value to “DefaultAction”.

When using the built-in dialog on the .NET Framework, the dialog will be constructed and displayed using the Windows
Forms API. This may have unintended consequences for console or service applications; it may be preferable to use a
custom ReportInfoSource in these situations. If your assembly does not already reference the appropriate Windows
Forms libraries, references will be added.

Dotfuscator User's Guide 139

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Using a Custom ReportInfoSource

The ExceptionTrackAttribute defines three properties for specifying a ReportInfoSource:

ReportInfoSourceElement. The ReportInfoSourceElement can be any of the values defined in the
SourceElements enumeration: a field, a property, a method, or when using method-level exception tracking, a
method argument. If the ReportInfoSourceElement is a method argument, it must correspond to a method
parameter on the method to which the attribute is attached.
ReportInfoSourceOwner. If the ReportInfoSourceElement is a field, method, or property,
ReportInfoSourceOwner must indicate the class that defines the field, method, or property.
ReportInfoSourceName. The ReportInfoSourceName should be set to the name of the field, method, property, or
method argument of type IDictionary or IDictionary<string,string> that contains the user-specified report
information at runtime.

These properties are described in detail in the ExceptionTrack section of the custom attribute reference.

There are three key-value pairs that may be included in the dictionary provided by the ReportInfoSource:

consent. This is a string representation of a boolean that indicates whether the user has explicitly opted-in or out of
sending the current exception report message. This consent is independent of and overrides the global PreEmptive
Analytics opt-in setting.
comment. This is a custom comment that is optionally provided by the user. It can be used to solicit feedback from the
user, such as what he or she was doing when the exception occurred.
contact. This is a contact point that is optionally provided by the user. Its content is not structured, and may for
example contain an address, phone number, or user name for a social networking website. The built-in dialog requests
the user provide this as an address.

Any key-value pairs other than those described above will be ignored.

Collecting user-specified report information is optional. If the retrieved dictionary is null, does not contain a consent key,
or the value for the consent key is null or does not parse to a boolean, the global PreEmptive Analytics opt-in setting is
respected. If the comment or contact keys are omitted, the resulting PreEmptive Analytics message does not include
this information. See Entry Point Attributes for more information about the global PreEmptive Analytics opt-in setting.

Sample Exception Track attribute usage with ReportInfoSource defined as a method called "GetDictionary":

Exception Track Attribute Usage with ReportInfoSource

Dotfuscator User's Guide 140

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

[ExceptionTrack(
 ReportInfoSourceElement = SourceElements.Method,
 ReportInfoSourceName = "GetDictionary"
)]
private void Foo() {
 ...
}

// Creates and populates a dictionary with user-specified report information
public IDictionary<string, string> GetDictionary() {
 Dictionary<string, string> dict = new Dictionary<string, string>();
 dict.Add("consent", "true");
 dict.Add("comment", "The Foo() method threw an exception.");
 dict.Add("contact", "foo@bar.com");
 return dict;
}

2.5.10.4 PreEmptive Analytics
PreEmptive Analytics Message Types

PreEmptive Analytics defines several message types:

Application and Session Start
Application and Session Stop
Feature
Performance Probe
System Profile
Tamper Detected
Exception Detected

Application and Session Start and Stop messages (the application lifecycle messages) are intended to be sent when an
application starts running and when it shuts down. The information contained in these messages is used to track
application behavior and basic usage patterns. Extended usage and environment information is obtained by using the
Feature, Performance Probe, or System Profile messages.

The data from these messages drive the Runtime Intelligence Portal’s dashboards. To have your application send these
messages, you must:

Be a Runtime Intelligence Service subscriber (this gives you access to the dashboards and data in the portal).
Instrument your application with PreEmptive Analytics attributes, including Setup and Teardown.
Run your application through Dotfuscator with the Send Analytics Messages option turned on. See Configuring and
Running Dotfuscator with Application Analytics.

Dotfuscator User's Guide 141

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

See Example PreEmptive Analytics Enabled Application to see the contents of messages containing PreEmptive Analytics
data.

2.5.10.4.1 Configuring and Running Dotfuscator with
Application Analytics

PreEmptive Analytics Options

PreEmptive Analytics configuration options are available on the Settings Tab > Global Options property page in
Dotfuscator. From within Visual Studio, the Global Options property page is available from the Dotfuscator project's
properties dialog.

From the standalone user interface, the Options property page is available on the Settings tab.

There are five options for Instrumentation (Tamper Detection, Shelf Life, Exception Reporting, and PreEmptive Analytics):
Enable, Merge Runtime, Send Analytics Messages, Send Shelf Life Messages, and Send Tamper Messages.

Enabling Instrumentation (Tamper Detection, Shelf Life, and PreEmptive Analytics)

The Enable option turns Tamper Detection, Shelf Life, and PreEmptive Analytics on (default) and off. If this is turned off,
Dotfuscator ignores all Tamper Detection, Shelf Life, and Application Analytics attributes contained within the input
assemblies.

Dotfuscator User's Guide 142

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Merging or Referencing the Runtime

If set to "Yes" (default), the Merge Runtime option tells Dotfuscator to add the runtime code required for Tamper
Detection, Shelf Life, and PreEmptive Analytics to one of the input assemblies. Distribution of the PreEmptive Analytics DLL
is not required.

If set to "No", Dotfuscator outputs the runtime code in a separate assembly and adds the appropriate assembly references
to the input assemblies. The new DLL must be distributed along with the application. Dotfuscator will still need to inject
instrumentation helper methods into each assembly that is configured for Tamper Detection, Shelf Life, or PreEmptive
Analytics.

Regardless of how the merge is set, Dotfuscator still needs to inject code into one of the input assemblies in order to use
the PreEmptive Analytics library. Dotfuscator performs a dependency analysis of the input assemblies in order to choose
the best one. It chooses in such a way as to minimize new dependencies among input assemblies; however, adding new
dependencies is unavoidable in some cases. You can override the assembly that the PreEmptive Analytics runtime code
will be injected into by specifying a Project Property with the name accesspoint and the value being the name of the
assembly where the code will be inserted.

Strong Names

If any of the input assemblies are strong named, Dotfuscator will strong name the runtime DLL and sign it transparently. If
none of the input assemblies are strong named, Dotfuscator will not strong name the runtime DLL.

Sending Tamper or Application Analytics Messages

By default, assemblies that contain a method decorated with an InsertTamperCheck attribute are instrumented with
code to send tamper notification messages when tampering is detected. This functionality is configurable and is
controlled by the Send Tamper Messages option.

If the Send Analytics Messages option is set to "Yes", Dotfuscator will add code, based on the specified attributes, to
send application start and stop messages, session start and stop messages, and feature usage messages.

Assembly Level Configuration Options

Dotfuscator allows granular control of instrumentation attribute handling (e.g. tamper detection, shelf life, and application
analytics). The developer can tell Dotfuscator to honor or ignore and whether to keep or remove these attributes. These
settings can be applied at the assembly level.

From within Visual Studio, assembly level options are available on the properties tool window when an input assembly has
the focus.

Dotfuscator User's Guide 143

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

From the standalone user interface, the assembly level options are available on the Input tab.

Honor Instrumentation Attributes

Set Honor Instrumentation Attributes to "True" (the default) to tell Dotfuscator to process these attributes and perform
the indicated instrumentation on the target assembly. Setting the property to "False" tells Dotfuscator to ignore any
Instrumentation attributes.

A "False" setting is useful in testing scenarios and in advanced scenarios where a set of assemblies must be run through
Dotfuscator multiple times.

Strip Instrumentation Attributes

Set Instrumentation attributes to "True" (the default) to tell Dotfuscator to remove these attributes from the target output
assembly. Setting this property to "False" tells Dotfuscator to leave the attributes in the output assembly.

Like the Honor Instrumentation Attributes option, a "False" setting is useful in testing scenarios and in advanced
scenarios where a set of assemblies must be run through Dotfuscator multiple times.

The table below indicates the results when combining these two options in different ways.

Honor
Instrumentation
Attributes

Strip
Instrumentation
Attributes

Notes

True True Default settings. The assembly is instrumented and
attributes are removed.

False True The assembly is not instrumented and the attributes
are stripped out. This is useful for creating test builds

Dotfuscator User's Guide 144

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

that do not include Tamper Detection or Application
Analytics functionality.

True False The assembly is instrumented and the attributes are
left in. This is currently not a recommended
combination.

False False The assembly is not instrumented and the attributes
are left in. This is useful for assemblies that need to be
obfuscated but will need to have Tamper Detection
or Application Analytics added in a subsequent step.

PreEmptive Analytics and other Dotfuscator Features

When using Application Analytics, other Dotfuscator features are available. The injected runtime code is annotated with
obfuscation attributes so user configuration (beyond what is necessary for the input assemblies) is not required to
perform renaming, removal, or other transforms on applications using Application Analytics.

2.5.10.4.2 PreEmptive Analytics Custom Attributes
All PreEmptive Analytics custom attributes are defined in PreEmptive.Attributes.dll, which is located by default in
the Dotfuscator 4 installation folder. To add PreEmptive Analytics custom attributes to an application, the developer must
add a reference to this DLL and the DLL must be available at compile time. While injecting PreEmptive Analytics code,
Dotfuscator removes references to this DLL; therefore, the DLL is not required at application runtime and does not need
to be distributed with the application.

In addition to using the custom attributes DLL, all PreEmptive Analytics attributes may be specified as extended attributes
using the instrumentation editor on the Dotfuscator user interface. This is useful if you do not want to modify the
application source code to add custom attributes.

This section discusses the custom attributes at a high level (what they are, when and where to use them). For a
programmer's reference, see the custom attribute reference.

2.5.10.4.2.1 Assembly Level Attributes
All PreEmptive Analytics messages need to contain common information about the entity and application sending the
message. The developer provides this information in a set of custom attributes that are placed on one or more of the
assemblies making up the application.

Unlike most other attributes, Dotfuscator does not remove assembly level attributes from the assembly after processing.
Rather than removing them, Dotfuscator translates them into a form that the PreEmptive Analytics runtime can read when
the application loads.

Dotfuscator User's Guide 145

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

For more information, see the custom attribute reference.

Unique Identifiers

Most of the Assembly level attributes require a unique identifier. Except where noted, the identifiers must be generated
and maintained by the developer. It is recommended that generated identifier strings use the standard GUID format.
Examples:

Examples of Unique Identifiers

123D35B3-BFDD-4797-9E9D-A39A57C1FD7B
B85A9684-1964-489e-867B-D81E89DB7CCB

Application Attribute

Every assembly containing an entry point method should also have an Application attribute. The Application attribute
provides information about the application sending PreEmptive Analytics data. Most important is the application ID, a
unique identifier that should not change over the lifetime of the application. The application ID is required to allow a
PreEmptive Analytics Endpoint to aggregate data about an application across name and version number changes.

The application attribute has other properties, including name and version. These properties are not required. If not
specified in the application attribute, the PreEmptive Analytics code will try to acquire the application name and version by
reflecting on the assembly. Alternatively, if the name and version are specified in the application attribute, then the
PreEmptive Analytics code uses these values instead of reflecting on the assembly.

Binary Attribute

Every assembly containing a tamper checking method must also have a Binary attribute. The Binary attribute provides
information about a specific component (assembly) in the application. Each assembly must have its own Binary attribute
with its own corresponding ID. IDs specified in this attribute are sent in Tamper Notification messages to identify specific
binaries (assemblies) that make up an application. This attribute is not required to be present.

Note: Binary information is not sent as part of application start and stop messages; it is sent as part of tamper
detection messages.

Business Attribute

Every assembly containing an entry point method should also have a Business attribute. The Business attribute provides
information about the organization that built the application. The most important property is the company key. The
company key is a unique identifier that is provided as part of the PreEmptive Analytics enrollment process.

The Business attribute and company key are required for PreEmptive Analytics to work properly.

2.5.10.4.2.2 Entry Point Attributes

Dotfuscator User's Guide 146

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

To send any kind of PreEmptive Analytics Data, identify appropriate entry point methods in the application to be
processed. Then add Setup attributes to the entry point methods. When Dotfuscator encounters a Setup attribute during
its processing, it adds PreEmptive Analytics initialization code to the start of the entry point method. If Dotfuscator is
configured to send analytics messages, it adds code to send a startup message to a PreEmptive Analytics Endpoint. Setup
attributes are not required at runtime; therefore, Dotfuscator strips them from the output application.

An entry point method is a method in the application that is executed as part of the application's startup sequence. It
does not have to be the first method called by the runtime or framework when the application starts, but it must have the
property that is executed every time the application is run.

Example entry point methods for different application types:

Application Type Possible Entry Point Method

Console Application Main or method always called from Main

Windows Forms Application Main Form’s constructor

The Setup attribute has several arguments or properties, all in order to support privacy and data security scenarios.

Privacy and Security Settings

Opt-in

Applications that allow the user to opt-in or opt-out of PreEmptive Analytics Data gathering must communicate the user's
choice to the PreEmptive Analytics code when the application starts.

To accomplish this, the Setup attribute is used to specify an OptInSource, which Dotfuscator uses to generate code that
acquires the user's opt-in preference at runtime. The OptInSource is a Boolean-valued property, field, or method
argument; it is the developer's responsibility to ensure that a correct value is stored in the OptInSource at the time the
entry point method is executed.

The Setup attribute defines three properties for specifying an OptInSource:

OptInSourceElement. The OptInSourceElement can be any of the values defined in the SourceElements
enumeration: a field, a property, or a method argument. If the OptInSourceElement is a method argument, it must
correspond to a method parameter on the method to which the Setup attribute is attached.
OptInSourceOwner. If the OptInSourceElement is a field or property, OptInSourceOwner must indicate the class
that defines the field or property.
OptInSourceName. The OptInSourceName must be set to the name of the boolean field, property, or method
argument that contains the user's opt-in preference at runtime.

The opt-in settings are optional. If they are omitted, the PreEmptive Analytics code sends all messages (i.e. it assumes opt-
in).

Sample Setup attribute usage with OptInSource as method argument:

Dotfuscator User's Guide 147

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Sample Setup Attribute with OptInSource

[Setup(
 OptInSourceElement = SourceElements.MethodArgument,
 OptInSourceName = "optIn",
 UseSSL = false
)]
private void MyEntryMethod(bool optIn) { ... }

Application Instance ID

Applications that wish to provide an application instance identifier (e.g. a serial number) as part of the PreEmptive
Analytics Data must communicate the ID to the PreEmptive Analytics code when the application starts.

To accomplish this, the Setup attribute can be used to specify an InstanceIdSource, which Dotfuscator uses to
generate code that acquires the application's instance ID at runtime. The InstanceIdSource is a string valued property,
field, or method argument; it is the developer's responsibility to ensure that a correct value is stored in the
InstanceIdSource at the time the entry point method is executed.

Like the OptInSource, the Setup attribute defines three properties for specifying an InstanceIdSource:

InstanceIdSourceElement. The InstanceIdSourceElement can be any of the values defined in the
SourceElements enumeration: a field, a property, or a method argument. If the InstanceIdSourceElement is a
method argument, it must correspond to a method parameter on the method to which the Setup attribute is attached.
InstanceIdSourceOwner. If the InstanceIdSourceElement is a field or property, InstanceIdSourceOwner
must indicate the class that defines the field or property.
InstanceIdSourceName. The InstanceIdSourceName must be set to the name of the string field, property, or
method argument that will contain the application's instance Id at runtime.

The instance ID settings are optional. If they are omitted, PreEmptive Analytics Data does not include an instance ID.

Sample Setup attribute usage with InstanceIdSource defined as a static property called "InstanceId" on the
"Program" class:

Sample Setup Attribute with InstanceIdSource

[Setup(
 InstanceIdSourceElement = SourceElements.Property,
 InstanceIdSourceName = "InstanceId",
 InstanceIdSourceOwner = typeof(Program),
 UseSSL = false
)]
private void MyEntryMethod() { ... }

Dotfuscator User's Guide 148

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

SSL

The UseSSL argument controls which web protocol the PreEmptive Analytics code uses to send messages. If UseSSL is set
to true (default), it sends messages using the HTTPS protocol. If UseSSL is set to false, it sends messages using the HTTP
protocol.

The privacy and security settings properties are described in detail in the SetupAttribute section of the custom attribute
reference.

Offline Storage of Usage Data

PreEmptive Analytics instrumented applications have the ability to store usage data in situations when network access is
unavailable and then transmit the data when connectivity is restored. Usage data is stored in Isolated Storage. This
behavior is enabled by default and default connectivity detection code is injected into instrumented applications.
Developers can override the default behavior by changing the OfflineStateSourceElement. If the
OfflineStateSourceElement value is changed to None then usage data will not be stored when the application is
unable to connect to the network and that usage data will be dropped. Developers also have the ability to write their own
network detection code and make the network connectivity state available to the PreEmptive Analytics code by specifying
the applications offline state in a boolean value in the instrumented method's parameters, as the return value of a method
or in a field or property. This is accomplished by setting the OfflineStateSourceElement property to the appropriate
value and setting the OfflineStateSourceName and OfflineStateSourceOwner.

The application can also be notified of the success or failure of an attempt to store usage data to the offline storage
mechanism via the OfflineStorageResultSinkElement. If the value is None then no notification will be made of
the success or failure of the data storage. If the value is DefaultAction then if the storage mechanism is unable to store
any usage data the application will exit immediately. Developers can write code to react to the success or failure of offline
storage by setting the OfflineStorageResultSinkElement to the appropriate value and setting the
OfflineStorageResultSinkName and OfflineStorageResultSinkOwner. The selected application code will be
called with a parameter value or the boolean property or field will be set with the result of the most recent attempt to
save usage data to the offline storage mechanism.

Custom Endpoint

When you add the SetupAttribute, you may set the destination of the messages using the StaticEndpoint property.

2.5.10.4.2.3 Exit Point Attributes
To prepare an application for analytics, the developer must identify appropriate exit methods. The developer then must
add Teardown attributes to the exit methods. When Dotfuscator encounters a Teardown attribute during its processing, it
adds analytics cleanup code to the end of the exit method. Teardown attributes are not required at runtime; therefore,
Dotfuscator strips them from the output application after it adds the cleanup code.

An exit method is a method in the application that is executed as part of the application's shutdown sequence. It does not
necessarily have to be the last method called, but it should have the property that it is executed exactly once when the
application shuts down.

Dotfuscator User's Guide 149

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

It is possible for the same method to be both an entry point and an exit method (for example, the Main method in a
console application).

Example exit methods for different application types:

Application Type Possible Exit Method

Console Application Main or method always called from Main

Windows Forms Application Main Form’s constructor

Windows Forms Application Main Form's Dispose method

Windows Forms Application Main Form's OnClosed event handler

The Teardown attribute has no required arguments or properties, so it is simple to use:

Teardown Attribute

[Teardown()]
private void MyExitMethod() { ... }

2.5.10.4.2.4 Tamper Notification Attributes
The Tamper Notification custom attribute is defined in PreEmptive.Attributes.dll, which is located by default in
the Dotfuscator 4 installation folder. To add the Tamper Notification custom attribute to an application, the developer
must add a reference to this DLL and the DLL must be available at compile time. While injecting Tamper Notification code,
Dotfuscator removes references to this DLL; therefore, the DLL is not required at application runtime and does not need to
be distributed with the application.

In addition to using the custom attributes DLL, the Tamper Notification attribute may be specified as an extended
attribute using the instrumentation editor on the Dotfuscator user interface. This is useful if you do not want to modify the
application source code to add custom attributes.

This section discusses the custom attribute at a high level (what it is, when and where to use it). For a programmer's
reference, see the custom attribute reference.

2.5.10.4.2.5 Shelf Life and Sign of Life Attributes

Dotfuscator User's Guide 150

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The Shelf Life and Sign of Life custom attributes are defined in PreEmptive.Attributes.dll, which is located by
default in the Dotfuscator 4 installation folder. To add the Shelf Life or Sign of Life custom attributes to an application, the
developer must add a reference to this DLL and the DLL must be available at compile time. While injecting the Shelf Life
code, Dotfuscator removes references to this DLL; therefore, the DLL is not required at application runtime and does not
need to be distributed with the application.

In addition to using the custom attributes DLL, the Shelf Life or Sign of Life attributes may be specified as an extended
attribute using the instrumentation editor on the Dotfuscator user interface. This is useful if you do not want to modify the
application source code to add custom attributes.

This section discusses the custom attribute at a high level (what it is, when and where to use it). For a programmer's
reference, see the custom attribute reference.

2.5.10.4.2.6 Exception Tracking Attributes
The Exception Track custom attribute is defined in PreEmptive.Attributes.dll, which is located by default in the
Dotfuscator 4 installation folder. To add the Exception Track custom attribute to an application, the developer must add a
reference to this DLL and the DLL must be available at compile time. While injecting the Exception Tracking code,
Dotfuscator removes references to this DLL; therefore, the DLL is not required at application runtime and does not need to
be distributed with the application.

In addition to using the custom attributes DLL, the Exception Track attribute may be specified as an extended attribute
using the instrumentation editor on the Dotfuscator user interface. This is useful if you do not want to modify the
application source code to add custom attributes.

This section discusses the custom attribute at a high level (what it is, when and where to use it). For a programmer's
reference, see the custom attribute reference.

2.5.10.4.2.7 Feature Usage Attributes
Dotfuscator provides support for feature usage tracking via the Feature attribute. The developer may add a Feature
attribute to any method which maps to the start, stop, or entirety of a feature. When Dotfuscator encounters a Feature
attribute during its processing, and it is configured to “send analytics messages”, it adds code to the method to send a
PreEmptive Analytics feature usage message. Feature attributes are not required at runtime; therefore, Dotfuscator strips
them from the output application.

The Feature attribute has several arguments or properties. Developers wishing to implement feature usage tracking with
the PreEmptive Analytics Service will need to understand the use of the following properties:

Dotfuscator User's Guide 151

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Name

In order to make sense of feature-level analytics, features must be identified by a name. The Name argument is a string
value which defines the name of the feature in question, and is required. This name need not follow any particular
convention; but it should be descriptive and unique, except in cases where the feature attribute in question is one half of a
start-stop pair in which case, the feature names should be identical.

Event Type

In order to identify what portion of the feature an attributed method implements, the FeatureEventType argument
may be set. The FeatureEventType argument is an enumeration with the following values:

Enum Value Implication

FeatureEventTypes.Tick This method implements the entirety of the specified feature. (Default)

FeatureEventTypes.Start This method’s execution signifies the start of the specified feature.
Code to send the message will be added to the start of the method.

FeatureEventTypes.Stop This method’s execution signifies the end of the specified feature.
Code to send the message will be added to the end of the method.

The FeatureEventType argument is optional. If it is omitted, the default value (Tick) is assumed.

Sample Feature attribute usage for a method called as part of the Find feature:

Sample Feature Attribute

[Feature(
 "Find",
 FeatureEventType = FeatureEventTypes.Start
)]
private void BeginFind() { ... }

If a method’s logic fully encompasses a feature, you may place two feature attributes on the method: a start and a stop.
Dotfuscator sends the start message when the method begins execution, and the stop message when the method
completes.

Start and Stop Feature Attributes

Dotfuscator User's Guide 152

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

[Feature(
 "Find",
 FeatureEventType = FeatureEventTypes.Start
)]
[Feature(
 "Find",
 FeatureEventType = FeatureEventTypes.Stop
)]
private void BeginFind() { ... }

2.5.10.4.2.8 Performance Attributes
PreEmptive Analytics code can be used to gather and send performance related information while the application is
executing. To add support for this to an application, place a PerformanceProbe attribute on a method or methods in
the application. When Dotfuscator encounters the attribute during its processing, it adds code to obtain performance
information and send a message to a PreEmptive Analytics Endpoint.

Performance data collected includes:

CPU Utilization
Memory available
Memory used by current process

Performance Data

[PreEmptive.Attributes.PerformanceProbe()]
public void DoSomething() { ... }

The collected performance data is available in the Data Extract report on the Runtime Intelligence Portal. It can also be
downloaded from the File Feeds section.

2.5.10.4.2.9 Environment Attributes
PreEmptive Analytics code can be used to gather and send information about the system the application is running on. To
add support for this to an application, place a SystemProfile attribute on a method in the application. When
Dotfuscator encounters the attribute during its processing, it adds code to gather the system profile and send a message
to a PreEmptive Analytics Endpoint. Typically this data only needs to be collected once during an application run.

Below is a high level description of the kind of system data that is gathered:

Dotfuscator User's Guide 153

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Category Examples of Collected Data

Processors Number of processors, clock speeds, manufacturer, and processor ID.

Logical Disks Number of logical disks, volume name, size, free space, file system

Memory Speed, capacity

Network Adapters IP address, MAC address

Domain Domain name and role

Display Name, refresh rate, vertical and horizontal resolution

Video Name, memory size, color depth,

Terminal Services Connections allowed

Sound Name, manufacturer

Modem Model, device type

Collected Data

[PreEmptive.Attributes.SystemProfile()]
public void Initialize() { ... }

The collected data is available in the Data Extract report on the Runtime Intelligence Portal. It can also be downloaded
from the File Feeds section.

2.5.10.4.2.10 Sending User Defined Data with Extended Keys
Most PreEmptive Analytics message types allow user defined data (in the form of key-value pairs) to be gathered and sent
along with the message.

To send extended key information, specify an ExtendedKeySource on the attribute corresponding to the message you
wish to send.

Dotfuscator uses the ExtendedKeySource to generate code that gathers the key-value pairs at runtime. The
ExtendedKeySource is an IDictionary or IDictionary<string,string> valued property, method, field, or method
argument; it is the developer's responsibility to ensure that a correct value is available in the ExtendedKeySource at the
time the attributed method is executed.

Attributes that support extended keys define three properties for specifying an ExtendedKeySource:

ExtendedKeySourceElement. The ExtendedKeySourceElement can be any of the values defined in the
SourceElements enumeration: a field, a property, a method, or a method argument. If the
ExtendedKeySourceElement is a method argument, it must correspond to a method parameter on the method to
which the attribute is attached.

Dotfuscator User's Guide 154

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

ExtendedKeySourceOwner. If the ExtendedKeySourceElement is a field, method, or property,
ExtendedKeySourceOwner must indicate the class that defines the field, method, or property.
ExtendedKeySourceName. The ExtendedKeySourceName should be set to the name of the IDictionary field,
method, property, or method argument that contains the extended keys at runtime.

Extended key settings are always optional. If they are omitted, the resulting PreEmptive Analytics message does not
include extended key information.

Sample Feature attribute usage with ExtendedKeySource defined as a method called "GetDictionary":

Feature Attribute Usage with ExtendedKeySource

[Feature(
..."Click"
 ExtendedKeySourceElement = SourceElements.Method,
 ExtendedKeySourceName = "GetDictionary",
)]
private void button1_Click(object sender, EventArgs e) {
...
}

// Creates and populates a dictionary with custom data
public IDictionary<string, string> GetDictionary() {
 Dictionary<string, string> dict = new Dictionary<string, string>();
 dict.Add("key1", "val1");
 dict.Add("key2", "val2");
 return dict;
}

Extended key data sent by the application is available in the Data Extract report on the Runtime Intelligence Portal. It can
also be downloaded from the “File Feeds” section.

2.5.10.4.2.11 Automatically Sending Method Parameters as
Extended Keys

In addition to user specified name-value pairs gathered at runtime and sent in the Extended Keys the parameter names
and values of instrumented methods can be automatically gathered and added to the set of Extended Key data.

To add parameter information to extended key information, specify the ExtendedKeyMethodArguements on the
attribute decorating the method whose parameters and values you wish to send.

Dotfuscator uses the ExtendedKeyMethodArguements to generate code that gathers the values of the specified
parameters at runtime and places them in a key-value dictionary. The ExtendedKeyMethodArguements is a string that
defines which parameters will be included, and optionally what the reported keys should named be in the message data.

Dotfuscator User's Guide 155

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

* All parameters

<param1>,<param2> Only the names and values of param1 and param2

<param1>=<key1>,<param2>=
<key2>

Only the values of param1 and param2 with the key names key1 and key2
respectively

Attributes that support extended keys provide an ExtendedKeyMethodArguement.

ExtendedKeyMethodArguements is always optional. If it is blank or omitted, the resulting PreEmptive Analytics
message does not include parameter information.

ExtendedKeyMethodArguements values can consist of any combination of the following patterns:

2.5.10.4.3 Testing and Debugging Applications with
Application Analytics

Once the application has been run through Dotfuscator, the Application Analytics functionality is ready to be tested. When
the PreEmptive Analytics instrumented application is started and stopped, or when an attributed feature is used, the
appropriate messages should be sent to the hosted service. There are several ways to verify that the correct messages are
sent at the correct times. This section discusses client side and server side verification techniques.

2.5.10.4.3.1 Configuring Message Tracing
The developer can obtain a client side trace of outgoing messages by setting up message tracing in the application and
examining the output as outlined below:

Here's a sample App.config File:

<configuration>
 <system.diagnostics>
 <trace autoflush="true" indentsize="0">
 <listeners>
 <remove name="Default"/>
 <add name="myListener" type="System.Diagnostics.TextWriterTraceListener"
initializeData="c:\myListener.log" />
 </listeners>
 </trace>
 <switches>
 <add name="traceSwitch" value="4" />
 </switches>
 </system.diagnostics>
</configuration>

Dotfuscator User's Guide 156

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The <listeners> element in the config file is where the developer can add and remove any or all listeners. Refer to the
preceding example; it removes the default Trace Listener, which is DefaultTraceListener (the output window in
Visual Studio), and adds the TextWriterTraceListener, which writes traces messages to c:\myListener.log.

TraceSwitch

This class provides support for multiple levels instead of the simple on/off control offered by the BooleanSwitch class.
TraceSwitch class works with the following tracing levels:

Tracing Level Configuration Value Description

Off 0 Outputs no messages to Trace Listeners

Error 1 Outputs only error messages to Trace Listeners

Warning 2 Outputs error and warning messages to Trace Listeners

Info 3 Outputs informational, warning and error messages to Trace
Listeners

Verbose 4 Outputs all messages to Trace Listeners

The name of the trace switch used in the message sending runtime is "traceSwitch", and the name of the config file trace
switch name must be exactly the same for the tracing to work.

2.5.10.4.3.2 Watching Messages
HTTP traffic-logging tools such as Fiddler (available for download at: http://www.fiddlertool.com) allow the developer to
watch PreEmptive Analytics messages on the wire, thereby providing another way to obtain the message ID.

It is easier to observe message traffic if SSL is turned off in the SetupAttribute.

2.5.10.4.3.3 Downloading Message Data
The Runtime Intelligence Portal provides the capability to securely download raw message data originating from .NET
applications. The data is available in CSV files compatible with MS Excel.

To obtain raw message data, the developer should access the Runtime Intelligence Portal at
http://www.runtimeintelligence.com. Enter the User Name and Password provided by PreEmptive Solutions, then
navigate to File Feeds, located under Data Extracts.

2.5.10.4.4 Example PreEmptive Analytics Enabled Application
Here is a simple sample C# application scenario that uses custom attributes to drive instrumentation for application
analytics.

Dotfuscator User's Guide 157

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

http://www.runtimeintelligence.com/

Sample C# Scenario

Dotfuscator User's Guide 158

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

[assembly: Business("66ce94c5-08c2-4b3b-99e4-0a92a5bb3c17", "PreEmptive Solutions")]
[assembly: Application("8F6A00E8-0C11-433e-A683-30EB828C4B3C")]
[assembly: Binary("444745EB-92CE-45e8-A749-33A0A92364FC")]

Entry point:

 static class Program
 {
 /// <summary>
 /// Demonstrating sample use of PreEmptive Analytics.
 /// </summary>
 [STAThread]
 static void Main() {
 SoSetup("357-1113-1719");
 Application.Run(new Form1());
 }

 [Setup(
 OptInSourceElement = SourceElements.None,
 InstanceIdSourceElement = SourceElements.MethodArgument,
 InstanceIdSourceName = "instanceId",
 UseSSL = false
)]
 public static void SoSetup(string instanceId) {
 //empty method. Dotfuscator supplies the code (if the method is not
 // empty, Dotfuscator adds the code at the start of the method)
 }
 }

Exit point:

 public partial class Form1 : Form {
 [InsertTamperCheck()]
 public Form1() {
 // Dotfuscator will add application integrity checks here
 // along with code to send a message if the integrity check fails.
 InitializeComponent();
 }

 [Teardown]
 private void Form1_FormClosing(object s, FormClosingEventArgs e) {
 //empty method. Dotfuscator supplies the code (if the method is not
 // empty, Dotfuscator adds the code at the end of the method)
 }
 }

Dotfuscator User's Guide 159

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Application Startup message for SOSWinApp.exe, whose serial number is 357-1113-1719:

<MessageCache>
 <InstanceId>357-1113-1719</InstanceId>
 <ApplicationGroupId>1cb4c0ba-f9b1-4935-a633-7cdc2ff6d38b</ApplicationGroupId>
 <Business>
 <CompanyName>PreEmptive Solutions</CompanyName>
 <CompanyId>66ce94c5-08c2-4b3b-99e4-0a92a5bb3c17</CompanyId>
 </Business>
 <TimeSentUtc>2007-10-01T21:46:00.2250193Z</TimeSentUtc>
 <ApiLanguage>.NET CLR</ApiLanguage>
 <ApiVersion>2.0.2795.27414</ApiVersion>
 <Id>1a97253b-045b-486d-a097-c8ca5eea0efd</Id>
 <Messages>
 <Message xsi:type="ApplicationLifeCycle">
 <SessionId>1cb4c0ba-f9b1-4935-a633-7cdc2ff6d38b</SessionId>
 <Event>
 <PrivacySetting>SupportOptout</PrivacySetting>
 <Code>Application.Start</Code>
 </Event>
 <Binary>
 <ModifiedDate>2007-10-01T17:40:53.947891-04:00</ModifiedDate>
 <Id>444745eb-92ce-45e8-a749-33a0a92364fc</Id>
 <Name>SOSWinApp, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null</Name>
 <Version>1.0.0.0</Version>
 </Binary>
 <TimeStampUtc>2007-10-01T21:45:50.2500433Z</TimeStampUtc>
 <Id>63d588c4-761a-4f6a-90fe-f3d89432a797</Id>
 <User>
 <IsAdministrator>false</IsAdministrator>
 <Name>724908d2f82cafe6b03e51438dcc5838</Name>
 </User>
 <Host>
 <RuntimeVersion>2.0.50727.42</RuntimeVersion>
 <IPAddress>172.16.7.42</IPAddress>
 <Name>04f07368bbabe92b7494f5fdd72c6476</Name>
 <OS>
 <OsInstallDate>2006-10-24T13:45:38</OsInstallDate>
 <OsName>Microsoft Windows XP Professional</OsName>
 <OsServicePackMajorVersion>2</OsServicePackMajorVersion>
 <OsServicePackMinorVersion>0</OsServicePackMinorVersion>
 <Locale>0409</Locale>
 <OSLanguage>1033</OSLanguage>
 <IsVirtualized>false</IsVirtualized>
 </OS>
 </Host>

Dotfuscator User's Guide 160

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

 </Message>
 <Message xsi:type="SessionLifeCycle">
 <SessionId>1cb4c0ba-f9b1-4935-a633-7cdc2ff6d38b</SessionId>
 <Event>
 <PrivacySetting>SupportOptout</PrivacySetting>
 <Code>Session.Start</Code>
 </Event>
 <Binary>
 <ModifiedDate>2007-10-01T17:40:53.947891-04:00</ModifiedDate>
 <Id>444745eb-92ce-45e8-a749-33a0a92364fc</Id>
 <Name>SOSWinApp, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null</Name>
 <Version>1.0.0.0</Version>
 </Binary>
 <TimeStampUtc>2007-10-01T21:45:50.4214882Z</TimeStampUtc>
 <Id>0e7c2426-dd62-44cd-ad66-4d9c05097af5</Id>
 </Message>
 <Message xsi:type="SessionLifeCycle">
 <SessionId>1cb4c0ba-f9b1-4935-a633-7cdc2ff6d38b</SessionId>
 <Event>
 <PrivacySetting>SupportOptout</PrivacySetting>
 <Code>Session.Start</Code>
 </Event>
 <Binary>
 <ModifiedDate>2007-10-01T17:40:53.947891-04:00</ModifiedDate>
 <Id>444745eb-92ce-45e8-a749-33a0a92364fc</Id>
 <Name>SOSWinApp, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null</Name>
 <Version>1.0.0.0</Version>
 </Binary>
 <TimeStampUtc>2007-10-01T21:45:50.4214882Z</TimeStampUtc>
 <Id>a44c5dd3-6328-47aa-82a2-63a28bf8270d</Id>
 </Message>
 </Messages>
 <SchemaVersion>02.00.00</SchemaVersion>
 <Application>
 <ApplicationType>.exe</ApplicationType>
 <Id>8f6a00e8-0c11-433e-a683-30eb828c4b3c</Id>
 <Name>SOSWinApp</Name>
 <Version>1.0.0.0</Version>
 </Application>
</MessageCache>

Application Shutdown for SOSWinApp.exe, whose serial number is 357-1113-1719:

<MessageCache>
 <InstanceId>357-1113-1719</InstanceId>
 <ApplicationGroupId>1cb4c0ba-f9b1-4935-a633-7cdc2ff6d38b</ApplicationGroupId>

Dotfuscator User's Guide 161

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

 <Business>
 <CompanyName>PreEmptive Solutions</CompanyName>
 <CompanyId>66ce94c5-08c2-4b3b-99e4-0a92a5bb3c17</CompanyId>
 </Business>
 <TimeSentUtc>2007-10-01T21:47:17.6401846Z</TimeSentUtc>
 <ApiLanguage>.NET CLR</ApiLanguage>
 <ApiVersion>2.0.2795.27414</ApiVersion>
 <Id>2ab3e80c-2a37-4cbb-ae0c-905ba7f20f4d</Id>
 <Messages>
 <Message xsi:type="SessionLifeCycle">
 <SessionId>1cb4c0ba-f9b1-4935-a633-7cdc2ff6d38b</SessionId>
 <Event>
 <PrivacySetting>SupportOptout</PrivacySetting>
 <Code>Session.Stop</Code>
 </Event>
 <Binary>
 <ModifiedDate>2007-10-01T17:40:53.947891-04:00</ModifiedDate>
 <Id>444745eb-92ce-45e8-a749-33a0a92364fc</Id>
 <Name>SOSWinApp, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null</Name>
 <Version>1.0.0.0</Version>
 </Binary>
 <TimeStampUtc>2007-10-01T21:47:17.5934269Z</TimeStampUtc>
 <Id>ae2d572d-6d22-4176-aa98-4ea69ef649fb</Id>
 </Message>
 <Message xsi:type="ApplicationLifeCycle">
 <SessionId>1cb4c0ba-f9b1-4935-a633-7cdc2ff6d38b</SessionId>
 <Event>
 <PrivacySetting>SupportOptout</PrivacySetting>
 <Code>Application.Stop</Code>
 </Event>
 <Binary>
 <ModifiedDate>2007-10-01T17:40:53.947891-04:00</ModifiedDate>
 <Id>444745eb-92ce-45e8-a749-33a0a92364fc</Id>
 <Name>SOSWinApp, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null</Name>
 <Version>1.0.0.0</Version>
 </Binary>
 <TimeStampUtc>2007-10-01T21:47:17.5934269Z</TimeStampUtc>
 <Id>086289bc-d8cb-453e-b5ea-b4ac238a4647</Id>
 <User>
 <IsAdministrator>false</IsAdministrator>
 <Name>724908d2f82cafe6b03e51438dcc5838</Name>
 </User>
 <Host>
 <RuntimeVersion>2.0.50727.42</RuntimeVersion>
 <IPAddress>172.16.7.42</IPAddress>
 <Name>04f07368bbabe92b7494f5fdd72c6476</Name>

Dotfuscator User's Guide 162

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

 <OS>
 <OsInstallDate>2006-10-24T13:45:38</OsInstallDate>
 <OsName>Microsoft Windows XP Professional</OsName>
 <OsServicePackMajorVersion>2</OsServicePackMajorVersion>
 <OsServicePackMinorVersion>0</OsServicePackMinorVersion>
 <Locale>0409</Locale>
 <OSLanguage>1033</OSLanguage>
 <IsVirtualized>false</IsVirtualized>
 </OS>
 </Host>
 </Message>
 </Messages>
 <SchemaVersion>02.00.00</SchemaVersion>
 <Application>
 <ApplicationType>.exe</ApplicationType>
 <Id>8f6a00e8-0c11-433e-a683-30eb828c4b3c</Id>
 <Name>SOSWinApp</Name>
 <Version>1.0.0.0</Version>
 </Application>
</MessageCache>

Tamper detected message for SOSWinApp.exe, whose serial number is 357-1113-1719:

<MessageCache>
 <InstanceId>357-1113-1719</InstanceId>
 <ApplicationGroupId>b38041f6-f01c-4a2a-8ce5-b6caaa7d39e8</ApplicationGroupId>
 <Business>
 <CompanyName>PreEmptive Solutions</CompanyName>
 <CompanyId>66ce94c5-08c2-4b3b-99e4-0a92a5bb3c17</CompanyId>
 </Business>
 <TimeSentUtc>2007-10-01T21:51:12.5359398Z</TimeSentUtc>
 <ApiLanguage>.NET CLR</ApiLanguage>
 <ApiVersion>2.0.2795.27414</ApiVersion>
 <Id>47da5317-4df6-4f15-85cd-f0a01ed5c00c</Id>
 <Messages>
 <Message xsi:type="SecurityMessage">
 <SessionId>b38041f6-f01c-4a2a-8ce5-b6caaa7d39e8</SessionId>
 <Event>
 <PrivacySetting>AlwaysSend</PrivacySetting>
 <Code>Security.Integrity.Tampering</Code>
 </Event>
 <Binary>
 <ModifiedDate>2007-10-01T17:50:18.4525198-04:00</ModifiedDate>
 <Id>444745eb-92ce-45e8-a749-33a0a92364fc</Id>
 <Name>SOSWinApp, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null</Name>
 <Version>1.0.0.0</Version>

Dotfuscator User's Guide 163

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

 </Binary>
 <TimeStampUtc>2007-10-01T21:51:02.7323458Z</TimeStampUtc>
 <Id>8f3c939a-79f3-4fbc-97b0-d8af5ef9ad4b</Id>
 </Message>
 </Messages>
 <SchemaVersion>02.00.00</SchemaVersion>
 <Application>
 <ApplicationType>.exe</ApplicationType>
 <Id>8f6a00e8-0c11-433e-a683-30eb828c4b3c</Id>
 <Name>SOSWinApp</Name>
 <Version>1.0.0.0</Version>
 </Application>
</MessageCache>

2.5.11 Decoding Obfuscated Stack Traces
One potential drawback of obfuscation is that debugging and troubleshooting obfuscated applications can be difficult
due to name mangling. Dotfuscator addresses this drawback by providing an integrated tool that allows you to use your
output mapping files to recover the original symbols from obfuscated stack traces.

For example, if you have an obfuscated application that you have shipped and you receive a stack trace from one of your
customers, that stack trace might look like this:

Stack Trace

Unhandled Exception: System.ApplicationException: A bad thing happened!
 at a.a()
 at b.a(String A_0)
 at b.a(String[] A_0)

You could use your XML mapping file, or better yet, the HTML Report based on the mapping file to manually recover the
original names, but this can be a tedious and time consuming process. The stack trace translation tool automates this by
letting you provide a map file, paste the stack trace into a window, and press the Translate button. The translated stack
trace is shown at the bottom window:

Dotfuscator User's Guide 164

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Some methods in the obfuscated stack trace might be ambiguous; that is, due to the use of Overload Induction and
Enhanced Overload Induction, there might be more than one matching un-obfuscated method. In these cases, the tool
displays all the possibilities.

If you just want to look up a specific type or method by name, click the Translate Specific Element tab. You will see a
screen that will allow you to type in the obfuscated names of the specific items you want to translate.

Dotfuscator User's Guide 165

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

To look up just a type, fill in the Type Name text box and click Translate.
To look up a method, fill in the Type Name and Method Name text boxes. You can optionally provide a signature by
checking the Method Signature check box and filling in the signature in the adjacent text box. The signature must be
as it would appear in a stack trace.

2.5.12 Using Lucidator
To translate complete stack traces, open a map file produced by Dotfuscator. Next, open Lucidator by clicking Start >
PreEmptive Solutions > Lucidator or using the following commands in the command line:

Dotfuscator User's Guide 166

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Options Description

/mapfile=<map file> specifies the map file (eg: /mapfile=map.xml)

/stacktracefile=<stack trace

file>

specifies the file containing the stack trace (eg:
/stacktracefile=stacktrace.txt)

/c=<culture> set user interface language (requires appropriate language resources).
Argument is the lowercase language code:(eg: /c=de, /c=ja, /c=zh-CHS

When the Lucidator window displays on your desktop, select the Translate Lines tab, and then paste the stack trace in the
window. Click the Translate button.

The translated stack trace displays in the Translation Report section of the window.

Methods in obfuscated stack traces may be ambiguous due to the use of Overload Induction and Enhanced Overload
Induction. Because there may be more than one matching unobfuscated method, Lucidator displays all the possibilities.
To look up a specific type or method by name, click the Translate Specific Element tab:

Dotfuscator User's Guide 167

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

In this screen, enter the obfuscated names of the specific items you want to translate. For example, to translate an
obfuscated type name, enter the obfuscated name in the Type Name: field and click Translate. Likewise, to translate an
obfuscated method name, enter the obfuscated name in the Method Name: field and click Translate. You may optionally
provide a signature a by checking the Method Signature box and entering the signature in the adjacent text box.

Note: The signature must be as it appears in the stack trace.

2.5.13 Customer Feedback Options
Dotfuscator provides an anonymous usage reporting system that users can opt-in to. If you opt-in to this program, only
anonymized high level usage data will be gathered by PreEmptive Solutions with the sole intent of improving the
Dotfuscator Software product family. You may change your feedback options at any time from the Help > Customer
Feedback Options menu.

Dotfuscator User's Guide 168

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.6 References
This section contains a full reference to all of Dotfuscator's command line syntax, build task settings, configuration file
options, and custom attributes. It also contains pointers to Dotfuscator’s configuration and mapping file DTDs.

Additional resources such as articles, whitepapers, and tutorials can be found online at
www.preemptive.com/resources.html.

2.6.1 Command Line Interface Reference
The command line interface is designed to allow you to:

Dotfuscator User's Guide 169

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

http://www.preemptive.com/resources/index.html

Obfuscate from the command line without requiring creation of a configuration file.
Override or supplement options in an existing configuration file using command line options.
Create a configuration file from the command line.
Launch the standalone graphical user interface with options and/or a configuration file specified on the command line.

2.6.1.1 Command Line Option Summary
Command line options may begin with the '/' or the '-' characters.

Command Line Options

Usage: dotfuscator [options] [config_file]

Traditional Options

The following is a summary of the traditional command line options.

Traditional
Options

Description

/g Launch the standalone GUI

/i Investigate only

/p=<property

list>

Specifies values for user defined properties in the configuration file. Comma separated list
of name-value pairs (e.g. /p=projectdir=c:\\temp,projectname=MyApp.exe)

/q Quiet output

/v Verbose output

/nologo Suppresses the output of the Dotfuscator Copyright and License information.

/? Print help

[config_file] configuration file containing runtime options.

The /v option induces Dotfuscator to provide information about its progress during execution. The level of detail here will
likely change between releases.

The /i option tells Dotfuscator to not create any output assemblies files. If the configuration file specifies a map file, the
results of the run will be found there (this option is close to worthless without generating a map).

The /q option tells Dotfuscator to run completely without printed output. This is suitable for inclusion into application
build sequences. This option overrides verbose mode.

The /p option tells Dotfuscator to set external properties at the command line. Setting these properties here will override
those specified in the <properties> section of the configuration file.

Dotfuscator User's Guide 170

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The <proplist> is a list of comma-separated name-value pairs. For example, property declaration and assignment in
conjunction with the –p option, might look like:

Property Declaration and Assignment in Conjunction with -p Option:

/p=projectdir=c:\temp,projectname=MyApp

Properties may be quoted if they contain spaces as illustrated below:

Quoting Properties

/p=MyProperty="value has spaces"

Note: Property names are case sensitive.

The /g option tells Dotfuscator to start up the standalone graphical user interface. You can start the graphical user
interface with external properties and a specific configuration file using this option:

Start Up Standalone GUI

Dotfuscator /g /p=projectdir=c:\temp project_template.xml

The graphical user interface starts up if Dotfuscator is run with no command line arguments.

The configfile is a configuration file that is required for every run of Dotfuscator. Notice you do not enter
configuration information or target assemblies on the command line. This information must be found in the configuration
file.

Extended Options

Extended options are designed to allow for basic obfuscation from the command line, without requiring you to first create
a configuration file. If you use a configuration file with an extended command line option, the command line option
supplements or overrides the commands in the configuration file. See Supplementing or Overriding a Configuration File
from the Command Line for more information.

Extended options are recognized by the first four characters.

The following is a summary of the extended command line options. An asterisk denotes the default setting if an option is
missing and no configuration file is specified.

Extended Options Description

/in [+|-]<file>[,[+|-]<file>] Specify inputs. Any combination of assemblies, package files
or directory file masks can be specified. Use prefix to obfuscate
input as library mode (+) or private (-) assembly. Default is
governed by assembly file extension (EXEs are private; .DLLs
are run in library mode).

/out:<directory> Specify output directory. Default is .\Dotfuscated.

Dotfuscator User's Guide 171

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

/honor:[on|off*] Toggle honoring obfuscation attribute directives found in all
input assemblies.

/strip:[on|off*] Toggle stripping obfuscation attributes from all input
assemblies.

/makeconfig:<file> Save all runtime options (from command line and configuration
file if present) to <file>.

/debug:[on:off*|impl|opt|pdb] Emit debugging symbols for obfuscated assemblies and control
JIT behavior.

/suppress:[on|off*] Add the SuppressIldasmAttribute to supported output
assemblies.

/disable Disable all transforms regardless of other options

/rename:[on|off*] Enable/disable renaming.

/mapout:<file> Specify output mapping file.

Default is .\Dotfuscated\map.xml.

/mapin:<file> Specify input mapping file.

/clobbermap:[on|off*] Specify map file overwrite mode.

/keep:[namespace|hierarchy|none*] Specify type renaming scheme.

/prefix:[on:off*] Append a prefix to all renamed types.

/enhancedOI:[on|off*] Use Enhanced Overload Induction.

/refsrename:[on*|off] Rename referenced metadata defined only in input map file.

/naming:

[loweralpha*|upperalpha|numeric|unprintable]

Specify identifier renaming scheme.

/controlflow:[high*|medium|low|off] Set control flow obfuscation level.

/encrypt:[on*|off] Enable/disable string encryption.

/prune:[on*|off|const] Enable/disable pruning, or enable constant-only pruning.

/link:[[+]<name>[,[+]<name>],]out=<name> Specify assemblies to link into named output assembly. A ‘+’
prefix indicates a prime assembly. Omit the list to link all
inputs, using first input as the prime assembly. You can specify
multiple link options on the command line.

/link:off Disables linking. Linking is off by default unless you pass a
configuration file with linking options. This option is useful for
that scenario.

/premark:[on|off*|only] Enable/disable watermarking. “Only” option disables all other

Dotfuscator User's Guide 172

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

transforms.

/watermark:<string> Specify the watermark string. Quotes are optional. By default,
all input assemblies will be watermarked with this string.

/passphrase:<passphrase> Optionally specify a passphrase to use for encrypting the
watermark string.

/charmap:<name> Specify a character map to use to encode the watermark
string. The name must be one of the supported character
maps. See Character Maps.

/smart:[on|off] Enables/disables Smart Obfuscation. See SmartObfuscation.

/soreport:[all|warn|none] Sets the verbosity level of the reporting output of the Smart
Obfuscation functionality. See SmartObfuscation.

/offlineactivation:<activation_file> Manually activate Dotfuscator with the activation data
contained in the <activation_file>.

Examples:

Example 1

dotfuscator -in:my.dll

Obfuscates my.dll as a library (visible symbols preserved and unpruned) with renaming, control flow, pruning, and string
encryption turned on. The output assembly is written to a directory called .\Dotfuscated, and the map file is written to
.\Dotfuscated\map.xml since no output directories were specified.

Example 2

dotfuscator -in:-myapp.exe,-private.dll

Obfuscates myapp.exe and private.dll together as a standalone application. Even visible symbols inside the DLL are
obfuscated. Pruning is enabled based on the entry point method contained in myapp.exe.

Example 3

dotfuscator -in:myapp.exe -mapo:MyName.xml

This command obfuscates myapp.exe as a standalone application. An output renaming map is specified.

2.6.1.2 Supplementing or Overriding a Configuration File
from the Command Line

Dotfuscator User's Guide 173

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Dotfuscator has the unique ability to accept a complete or partial configuration file, yet allow you to supplement or
override its options from the command line. This allows you to quickly adjust and tweak settings using a standard
configuration file as a template.

Command Line Option Configuration File Option Notes

/in [+|-]<file>[,[+|-]<file>] input section adds

/out: <directory> output section overrides

/honor:[on|off*] inputassembly section overrides

/strip:[on|off*] inputassembly section overrides

/debug:[on|off*|impl|opt|pdb] "debug" global option overrides

/suppress:[on|off*] "suppressildasmattribute" global
option

overrides

/disable Sets "disable" option in renaming,
controlflow, stringencrypt, and removal
sections

overrides

/rename:[on:off] Sets (or unsets) "disable" option in
"renaming" section.

Overrides

Dotfuscator User's Guide 174

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

/mapout:<file> "mapoutput" section overrides

/mapin:<file> "mapinput" section overrides

/clobbermap:[on|off] "overwrite" attribute in "mapoutput"
section

overrides

/keep:[namespace|hierarchy|none] Sets (or unsets) renaming options:
"keepnamespace", "keephierarchy"

overrides

/enhancedOI:[on|off] Sets (or unsets) "enhancedOI" renaming
option

overrides

/refsrename:[on|off] "obfuscatereferences" attribute in
"mapinput" element.

overrides

/naming:

[loweralpha|upperalpha|numeric|unprintable]

Sets the "scheme" attribute in the
renaming section.

overrides

/controlflow:[high|medium|low|off] Sets the "level" attribute in the
controlflow" section. The off flag sets the
"disable" option.

overrides

/encrypt:[on|off] Sets (or unsets) the "disable" option in
the stringencrypt section.

overrides

Dotfuscator User's Guide 175

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

/prune:[on|off] Sets (or unsets) the "disable" option in
the removal section.

overrides

/link:[[+]<name>[,[+]<name>],]out=<name> Sets sub-elements of the
<linkedassembly> element.

overrides

/link:off Sets the "disable" option in the linking
section.

overrides

/premark: [on|off*|only] Sets (or unsets) the "disable" option in
the premark section. The "only" setting
is not saved to the configuration file.

overrides

/watermark Sets the <watermark> element. overrides

/passphrase Sets the <passphrase> element and sets
the usepassphrase option.

overrides

/charmap Sets the "encoding" attribute in the
premark section.

overrides

Dotfuscator User's Guide 176

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Examples:

The following examples use this configuration file that enables renaming with an output mapping file. It is referenced as
"myconfig.xml" in the examples.

Example 1

<?xml version="1.0"?>
<!DOCTYPE dotfuscator SYSTEM
"http://www.preemptive.com/dotfuscator/dtd/dotfuscator_v2.2.dtd">
<dotfuscator version="2.2">
 <renaming>
 <mapping>
 <mapoutput overwrite="true">
 <file dir="${configdir}\reports" name="MyMap.xml"/>
 </mapoutput>
 </mapping>
 </renaming>
</dotfuscator>dotfuscator -in:my.dll myconfig.xml

This command specifies my.dll as an input assembly in library mode (because of the DLL extension), and applies the
renaming options in the configuration file. In this case, control flow, string encryption, and pruning are disabled because
they are implicitly disabled in the configuration file.

The output DLL will go in a directory called ".\Dotfuscated", since an output is not specified in the configuration file or
on the command line.

Example 2

dotfuscator -in:my.dll -keep:namespace -enha:on -cont:high myconfig.xml

This command also specifies my.dll as an input assembly. In addition, it tells the renamer to keep namespaces and use
enhanced overload induction. It also enables control flow obfuscation, setting the level to "high" for maximum
obfuscation.

2.6.1.3 Saving a Configuration File from the Command Line
Once you have the command line settings that you want for your application, you can save a configuration file containing
those settings by using the /makeconfig option. This takes all your command line options, merges them with your
configuration template if you have one, and saves a custom configuration file that you can use for future runs.

Example

dotfuscator -in:my.dll -keep:namespace -enha:on -cont:high -make:new.xml myconfig.xml

Dotfuscator User's Guide 177

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The resulting configuration file (new.xml) shows the command line options merged with the options from the original
configuration (myconfig.xml):

Configuration File

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE dotfuscator SYSTEM
"http://www.preemptive.com/dotfuscator/dtd/dotfuscator_v2.2.dtd">
<dotfuscator version="2.2">
 <input>
 <asmlist>
 <inputassembly>
 <option>library</option>
 <file dir="." name="my.dll" />
 </inputassembly>
 </asmlist>
 </input>
 <output>
 <file dir="C:\MSProjects\dotfuscatortest\Dotfuscated" />
 </output>
 <renaming>
 <option>enhancedOI</option>
 <option>keepnamespace</option>
 <mapping>
 <mapoutput overwrite="true">
 <file dir="${configdir}\reports" name="MyMap.xml" />
 </mapoutput>
 </mapping>
 </renaming>
 <controlflow level="high" />
</dotfuscator>

2.6.1.4 Launching the Graphical User Interface from the
Command Line

If you invoke Dotfuscator with no command line options, the standalone graphical user interface starts up with an empty
project.

Alternatively, you can specify any combination of legal command line options along with the /g option to launch the user
interface with those options in effect.

Example:

dotfuscator -g -in:my.dll myconfig.xml

Dotfuscator User's Guide 178

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

This command launches the standalone user interface. The settings from myconfig.xml will be loaded, and my.dll will
be set as an input assembly.

2.6.2 MSBuild Task Reference
Since version 2.0, the .NET Framework has shipped with a task driven build engine called MSBuild. Dotfuscator provides an
MSBuild interface using tasks defined in PreEmptive.Dotfuscator.Tasks.dll. This DLL is installed into the following subdirectories of
the MSBuild extensions directory…:

MSBuild Extensions Directory:

$(MSBuildExtensionsPath)\PreEmptive\Dotfuscator\<major>
$(MSBuildExtensionsPath)\PreEmptive\Dotfuscator\<major>\<major>.<minor>
$(MSBuildExtensionsPath)\PreEmptive\Dotfuscator\<major>\<major>.<minor>\<major>.<minor>.<patch>

For example if version 4.11.5 of Dotfuscator is installed you will see the following
directories:

$(MSBuildExtensionsPath)\PreEmptive\Dotfuscator\4
$(MSBuildExtensionsPath)\PreEmptive\Dotfuscator\4\4.11
$(MSBuildExtensionsPath)\PreEmptive\Dotfuscator\4\4.11\4.11.5

There is also a targets template that you can import into your MSBuild scripts, PreEmptive.Dotfuscator.Targets. This file is installed
into the same directories.

The layout is designed so that when writing your own msbuild files you can point to the most specific version desired. For more
information see the section on Side by Side Installs.

2.6.2.1 Dotfuscate Task
You can run Dotfuscator from MSBuild using the Dotfuscate task. Below are the properties provided by the Dotfuscate
task.

Property Type Description

ConfigPath String Write Only. Sets the path to the Dotfuscator
configuration file.

DebugSymbols String[] Read Only. Exposes PDB files associated with output
assemblies. The PreEmptive.Dotfuscator.Targets file
exposes this property as an output Item named
DotfuscatedDebugSymbols.

InputAssemblies ITaskItem[] Write Only. Currently, the input assemblies must also

Dotfuscator User's Guide 179

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

be listed in the configuration file. This is only for
interoperation with Visual Studio generated project
files. This may change in the future.

MappingFile String Read Only. Exposes renaming map file. The
PreEmptive.Dotfuscator.Targets file exposes this
property as an output Item named
DotfuscatorMappingFile.

OutputAssemblies String[] Read Only. Exposes output assemblies. The
PreEmptive.Dotfuscator.Targets file exposes this
property as an output Item named
DotfuscatedAssemblies.

ReportFiles String[] Read Only. Exposes report files such as renaming HTML
report and removal reports. The
PreEmptive.Dotfuscator.Targets file exposes this
property as an output Item named
DotfuscatorReportFiles.

SatelliteAssemblies String[] Read Only. Exposes satellite assemblies associated with
output assemblies. The PreEmptive.Dotfuscator.Targets
file exposes this property as an output Item named
DotfuscatedSatelliteAssemblies.

Properties String Write Only. Sets user defined external properties. The
string must contain a valid XML element with child
elements that represent key/value pairs.

For example:

<Properties>

<Property1>Value1</Property1>

<Property2>2</Property2>

</Properties>

Dotfuscator Project Files in Visual Studio 2005 and later

If you are using the Visual Studio integrated version with Visual Studio 2005 and higher, your Dotfuscator project files are
automatically persisted in MSBuild format, so you should be able to take your project tree over to a build machine using
MSBuild without Visual Studio and have the build perform the same as it would inside Visual Studio.

2.6.2.2 PreMark Task
You can extract watermarks from previously watermarked assemblies using the PreMark task. This provides similar
functionality to the command line program Premark.exe included in your Dotfuscator installation directory.

Dotfuscator User's Guide 180

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Property Type Description

InputAssemblyPath String Required, Read,Write. Gets or sets the path to the
Assembly whose watermark you want to extract.

UsePassphrase Boolean Read,Write.

Passphrase String Read,Write. Currently, the input assemblies must also be
listed in the configuration file. This is only for interoperation
with Visual Studio generated project files. This may change
in the future.

Watermark String Read Only. Exposes the extracted watermark string.

2.6.3 Configuration File Reference
Dotfuscator configuration files may have any name or extension, but usually have a .xml extension. Configuration files
contain information about how a given application is to be Dotfuscated. The configuration file is an XML document
conforming to dotfuscator_v2.3.dtd (or one of its predecessors), referenced in the appendix.

This section documents Dotfuscator’s XML configuration file. It contains detailed descriptions of each configuration
option, making it useful as a reference, even if you are using Visual Studio, the standalone GUI, or the command line
interface to generate a configuration file for you.

2.6.3.1 Version
The .xml file version attribute must be present and must be applicable to your version of Dotfuscator. It should match the
version number of the DTD to which it conforms. Point releases of Dotfuscator are designed to be able to use unmodified
configuration files from earlier versions. For example, you should be able to run Dotfuscator 1.1 using a version 1.0
configuration file without having to edit the configuration file.

Note: The configuration file version is not always the same as the version of Dotfuscator. Every version of
Dotfuscator expects to see a specific, but not necessarily identical, version of the configuration file.

Version

<dotfuscator version="2.2">

2.6.3.2 Property List and Properties
The optional <propertylist> section allows for the definition and assignment of variables known as <properties>
that may be used later in the configuration file. Property definitions defined in this section are referred to as internal
properties.

Dotfuscator User's Guide 181

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Internal Properties

<!-- define expandable properties -->
<!-- optional -->
<propertylist>
 <property name="projectname" value="myproject"/>
 <property name="projectdir" value="c:\myprojects"/>
</propertylist>

Variables, or property references, may be used in the configuration file without being defined in this section. For example,
they may be defined on the command line or come from the environment. Properties work via string substitution, using
the following algorithm to find a value associated with the property:

1. Check the external property list for a value.
2. If not found, check for an environment variable with the same name as the property,
3. If not found, check for an internal definition in the propertylist section of the configuration file,
4. If still not found, use the empty string as the value.

External properties are passed in on the command line using the –p option. There are three built-in external properties:

applicationdir, which reflects Dotfuscator’s installation directory.
appdatadir, which reflects Dotfuscator’s local data directory.
configdir, which reflects the directory in which the configuration file resides.

Properties are useful for creating configuration files that act as templates for multiple projects, for different versions of the
same project, or for simple portability across different build environments. A property is referenced with the following
syntax:

Property Syntax

${property_name}

Property references are case sensitive, therefore ${MyProjectDir} references a different property than does
${myprojectdir}. Currently, property references may only be used as values in the dir or name attributes of the
<file> element, and not just anywhere in the configuration file. Here is a list of sections that use the <file> element:

inputassembly mapinput mapoutput

output tempdir assembly

removalreport transform key

loadpaths program filelist

smartobfuscationreport pfx

Dotfuscator User's Guide 182

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

A property reference is interpreted literally in any other place in the configuration file. Property references may not be
nested as doing so results in an error. Here is an example of a property reference in use:

Here is an example of a property reference in use:

<output>
 <file dir="${testdir}\output"/>
</output>

2.6.3.3 Global Section
The optional global section is for defining configuration options that apply across the entire run. This section describes
each global option in detail.

Note: Global options are not case sensitive.

2.6.3.3.1 Library Global Option
This option was deprecated in Dotfuscator 3.0. It has been replaced with a more granular library option that can be
applied to individual input assemblies. When reading older configuration files, Dotfuscator reads this option and honors it,
but the user interface saves the configuration file using the new options. See Library Mode By Assembly.

Library Global Option

<global>
 <!—set library option -->
 <option>library</option>
</global>

2.6.3.3.2 Verbose, Quiet, and Investigate Global Options
These options are the same as the corresponding command line options. Setting the command line option sets the global
option at run time. Alternatively, if the global option is set and the command line option is not set, then the global option
takes precedence. In other words, there is no way to unset a set global option from the command line.

Verbose, Quiet, and Investigate Global Options

Dotfuscator User's Guide 183

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

<global>
 <!-- run in verbose mode -->
 <option>verbose</option>
 <!-- run in quiet mode -->
 <option>quiet</option>
 <!-- investigate only and generate a map -->
 <option>investigate</option>
</global>

2.6.3.3.3 SuppressIldasmAttribute Global Option
Setting this option tells Dotfuscator to prevent Microsoft's Ildasm utility from displaying the assembly IL. This is only valid
for assemblies targeting .NET 2.0 and above.

SuppressIldasm Option

<global>
 <option>suppressildasm</option>
</global>

2.6.3.3.4 Debug Global Option
Setting these options tells Dotfuscator to create a symbol file in PDB format for each output assembly. Debuggers use
these files to provide useful information in a debugging session. Typically, they contain information such as line numbers,
source file names, and local variable names. The PDB files are placed in the output directory with the output assemblies.

This option is useful for assemblies that already have associated PDB files (i.e. you told your compiler to generate
debugging symbols). In this case, Dotfuscator uses information in the original PDB file to create the new PDB file for the
obfuscated version. In this case, the line numbers and source file names correspond to the information in the original
assembly.

If an input PDB file is missing, then the PDB files created by Dotfuscator will contain line numbers that correspond to the
low level Microsoft Intermediate Language instructions in the obfuscated assembly.

Debug, Debuglmpl, DebugOpt, and Pdb Global Options

Dotfuscator User's Guide 184

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

<global>
 <!-- Disable JIT optimization,create PDB file, use sequence points from PDB -->
 <option>debug</option>
 <!-- Disable JIT optimization,create PDB file, use implicit sequence points -->
 <option>debugimpl</option>

 <!-- Enable JIT optimization, create PDB file, use implicit sequence points -->
 <option>debugopt</option>

 <!-- Create the PDB file without enabling debug info tracking -->
 <option>pdb</option>
</global>

DebugImpl, DebugOpt and Pdb global options are supported for assemblies targetting .Net 2.0 and above. If these
options are used with assemblies targeting .Net 1.0 or 1.1, Debug global option will be used instead.

2.6.3.3.5 NoDotfuscatorAttribute Global Option
Dotfuscator, by default, inserts a custom attribute into your application named DotfuscatorAttribute. The attribute
contains information about the Dotfuscator version used to obfuscate the program, including product ID (CE vs. PE) and
version numbers. The purpose is threefold:

To identify which Dotfuscator version was used on a program.
Future Dotfuscator versions will use this information to identify already obfuscated third-party assemblies used as
inputs, as special treatment may be required in these cases.
PreEmptive Solutions is actively working with other tool vendors to ease the pain of debugging obfuscated code; the
attribute helps those tools know what they are dealing with.

If these things are not as important to you as the increased security of an anonymously obfuscated program, or if size
reduction is a higher priority, then you can disable insertion of the attribute by manually setting a global option in the
configuration file, called nodotfuscatorattribute.

NoDotfuscatorAttribute Global Option

<global>
 <option>nodotfuscatorattribute</option>
</global>

2.6.3.4 Input Assembly List
The input assembly list contains the file names and directories of the assemblies and/or packages you want to Dotfuscate.
It also contains configuration options that are set at the package or assembly level.

If you have a multi-module assembly, only list the module containing the manifest.

Dotfuscator User's Guide 185

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Example Title

<input>
 <asmlist>
 <inputassembly>
 ...
 <file dir="c:\temp" name="myproj.dll"/>
 </inputassembly>
 ...
 </asmlist>
</input>

2.6.3.4.1 Library Mode By Assembly
This setting tells Dotfuscator that a particular input assembly constitutes a library. For Dotfuscation purposes, a library is
defined as an assembly that is referenced from other components not specified as one of the inputs in this run. This has
implications for renaming and pruning, regardless of any custom excludes you may have set.

Here are the rules when using the library option:

Names of public classes and nested public classes are not renamed. Members (fields and methods) of these classes are
also not renamed if they have public, family, or famorassem access.
In addition, no virtual methods are renamed, regardless of access specifier. This allows clients of your library to override
private virtual methods if necessary.
Any user-specified custom renaming exclusions are applied in addition to the exclusions implied by the above rules.
Property and Event metadata are always preserved.
Pruning Rules.

Public classes are not removed, even if static analysis determines they are not required.
Fields of these classes are not removed if they have public, family, or famorassem access.
Methods of these classes are not removed if they have public, family, or famorassem access. In addition, such
methods are treated as entry points, so their call trees are followed and all subsequently called methods are also
protected from removal.

If you do not have the library option set for an assembly, then you are telling Dotfuscator that your input assembly is a
standalone application, or that it will only be referenced by other input assemblies. In this case obfuscation is more
aggressive:

Everything is renamed except methods that override classes external to the application (i.e. classes in assemblies that
are not included in the run.)
Property and Event metadata is removed, since this metadata is not required to run the application.
User specified custom renaming exclusions are also applied.

Dotfuscator User's Guide 186

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Pruning Rules
Specifically included classes, methods, or fields are not pruned.
All trigger methods and fields are not pruned.
All classes, members, and fields that are excluded from renaming also become excluded from pruning.
All other classes, fields, and methods that are unreachable from some included class, method, or field are pruned.

To specify library mode for an input assembly, add an <option> element to its <inputassembly> element.

Library Mode by Assembly

 <inputassembly>
 <option>library</option>
 <file dir="c:\temp" name="myproj.dll"/>
 </inputassembly>

2.6.3.4.2 Declarative Obfuscation By Assembly
For a complete description of Dotfuscator’s support for Declarative Obfuscation, see Declarative Obfuscation via Custom
Attributes.

Enabling or Disabling Declarative Obfuscation

Dotfuscator allows you to switch Declarative Obfuscation on or off for specific input assemblies. If not enabled,
Dotfuscator ignores obfuscation related custom attributes.

To enable declarative obfuscation via the configuration file, you add a honorOAs option to each <inputassembly>
element.

honorOAs Option Added to an Input Assembly Element

 <inputassembly>
 <option>honoroas</option>
 ...
 </inputassembly>

Stripping Declarative Obfuscation Attributes

To tell Dotfuscator to strip obfuscation attributes via the configuration file, you add a honorOAs option to each
<inputassembly> element.

stripOAs Option Added to an Input Assembly Element

 <inputassembly>
 <option>stripoa</option>
 ...
 </inputassembly>

Dotfuscator User's Guide 187

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.6.3.4.3 Instrumentation Processing By Assembly
Dotfuscator allows you to control instrumentation for specific input assemblies. The section on Configuring and Running
Dotfuscator with Application Analytics describes the effects of setting these options.

When any of the instrumenting transforms are enabled, Dotfuscator honors and strips unnecessary instrumentation
attributes from the output assemblies. The default behavior can be overridden at the input assembly level by specifying
one or both:

nohonorsos, to prevent Dotfuscator from acting on instrumentation attribute directives.
nostripsos, to prevent Dotfuscator from stripping unnecessary instrumentation attributes.

Instrumentation Processing by Assembly

 <inputassembly>
 <!-- do not strip instrumentation attributes -->
 <option>nostripsos</option>
 <!-- do not honor instrumentation attributes -->
 <option>nohonorsos</option>
 ...
 </inputassembly>

2.6.3.4.4 Transform XAML By Assembly
This setting tells Dotfuscator that a particular input assembly may contain markup, either XAML as found in Silverlight
applications or compiled XAML resources (BAML) as found in Windows Presentation Foundation applications; and
any markup should be analyzed and included for renaming. For Dotfuscation purposes, markup that is transformed will
have identifiers renamed in conjunction with any code-behind references of the elements. Properties that are referenced
from markup resources will have their property metadata retained but will be renamed.

To specify Transform XAML mode for an input assembly, add an <option> element to its <inputassembly> element.

Transform XAML Mode by Assembly

 <inputassembly>
 <option>transformxaml</option>
 <file dir="c:\temp" name="myproj.dll"/>
 </inputassembly>

2.6.3.5 User Defined Assembly Load Path
Dotfuscator needs to load assemblies referenced by your input assemblies in order to discover information about types
you are using in your input assemblies. Dotfuscator uses discovery rules similar to the rules used by Visual Studio and the
CLR itself.

Dotfuscator User's Guide 188

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

If a referenced assembly cannot be found using the default search rules, Dotfuscator provides a way for you to specify
additional directories in which to look for referenced assemblies. Dotfuscator searches these directories in the specified
order as the last step in its algorithm. However, if the prepend option (the Search First checkbox in the Project Properties
and Settings Tab) is used, then Dotfuscator searches the load path before applying its standard search.

To add a User Defined Assembly Load Path to your XML configuration file:

Adding a User Defined Assembly Load Path

 <input>
 <loadpaths>
 <option>prepend</option>
 <file dir="C:\temp" />
 ...
 </loadpaths>

 </input>

2.6.3.6 Output Directory
This is the directory where output assemblies are written. The application always overwrites files in this directory without
prompting the user.

Output Directory

<!-- destination directory is required -->
<output>
<file dir="c:\work"/>
</output>

2.6.3.7 Temp Directory
This section is optional and specifies Dotfuscator’s working directory. If not specified, the working directory defaults to the
system’s temporary directory. The application uses the working directory to run ildasm and ilasm on the input assemblies.
The disassembled output is stored in this directory along with any resources embedded in the input assemblies. These
files are automatically deleted after processing.

Temp Directory

<!-- scratch directory is optional -->
<!-- If absent, defaults to system's temp dir -->
<tempdir>
<file dir="c:\temp"/>
</tempdir>

Dotfuscator User's Guide 189

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.6.3.8 Obfuscation Attribute Feature Map
The feature map is for Declarative Obfuscation. For a complete description of Dotfuscator’s support for Declarative
Obfuscation, see Declarative Obfuscation via Custom Attributes. That section describes the Feature Map and lists the
native feature strings that Dotfuscator understands.

In the configuration file, the <obfuscationattributemap> element is where you can map strings obtained from an
obfuscation attribute’s Feature property to one or more feature strings that Dotfuscator understands.

Here is what such a mapping looks like in the XML configuration file:

Obfuscation Attribute Feature Map

 <obfuscationattributemap>
 <feature name="testmode">renaming, controlflow</feature>
 </obfuscationattributemap>

2.6.3.9 Renaming Section
The renaming section allows you to specify options that are specific to renaming, input and output mapping file locations,
and fine-grained rules for excluding items from renaming.

The renaming section is optional. If not present, the following defaults apply:

Default renaming (namespaces are removed).
New names are chosen using the loweralpha renaming scheme.
No mapping file read or written.
No exclusions beyond those dictated by your application type.

The section on identifier renaming describes the renaming options, the mapping file, and custom exclusions in great
depth. The following sections present an overview of each.

2.6.3.9.1 Renaming Scheme
Dotfuscator allows you to choose from several predefined algorithms for generating obfuscated identifier names:

Lower Alpha. This is the default renaming scheme used by all versions of Dotfuscator: {a,b,c,...}
Upper Alpha. This scheme uses upper case alphanumeric characters: {A,B,C,...}
Numeric. This scheme uses numeric characters only: {0,1,2,...}
Unprintable. This scheme uses unprintable high Unicode code points.

The renaming scheme is an attribute of the <renaming> element. Allowable values are: loweralpha, upperalpha,
numeric, or unprintable.

Dotfuscator User's Guide 190

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Renaming Scheme

<renaming scheme="unprintable">
...
</renaming>

2.6.3.9.2 Renaming Options
Dotfuscator allows several options that govern how namespaces are treated by the renaming algorithm. These are:
"keepnamespace" and "keephierarchy" and are explained in detail in the section on identifier renaming.

The disable option is primarily for convenience and troubleshooting purposes. When set, Dotfuscator skips renaming
altogether, regardless of what’s in the rest of the renaming section.

Renaming Options - Keepnamespace

<renaming>
<!-- Keep namespaces as they are, but rename types. -->
<option>keepnamespace</option>

<!-- Preserves namespace hierarchy but rename -->
<!-- namespace names -->
<option>keephierarchy</option>

<!—- Skip renaming, ignoring rest of section -->
<option>disable</option>
...
</renaming>

Dotfuscator allows you to specify that obfuscated type names must be prefixed with a default or user-specified string. To
use this feature, specify the prefix option. Please see Renaming Prefixes for full details.

Turning on the Renaming Prefix Feature

<renaming>
 <!-- this turns on the renaming prefix feature -->
 <option>prefix</option>
...
</renaming>

Dotfuscator also allows an enhanced level of Overload Induction that adds return type to the mix. The option to turn this
on is: enhancedOI and is explained in detail in the section on overload induction method renaming.

Apply Enhanced Overload Induction

Dotfuscator User's Guide 191

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

<renaming> <!-- Apply Enhanced Overload Induction. -->
 <option>enhancedOI</option>
 ...
</renaming>

Enhanced Overload Induction is, by default, not applied to classes marked as serializable. If you wish to apply enhanced
overload induction to all types, including serializable types, use the enhancedOIOnSerializables option:

Apply Enhanced Overload Induction Serializeable Option

<renaming>

<!-- Apply enhanced Overload Induction even on serializable types. -->
<option>enhancedOIOnSerializables</option>
...
</renaming>

You can change the renaming algorithm to rename types and members in a way that’s compatible with the XML Serializer.

Change Renaming Algorithm to be Compatible with XML Serializer

<renaming>

<!-- XML Serialization compatibility. -->
<option>xmlserialization</option>
...
</renaming>

For more information, see XML Serialization and Renaming.

Using the <explicitoverrides> renaming option lets Dotfuscator rename more methods by allowing it to introduce
explicit (i.e. non-syntactic) method overrides. In other words, overridden methods can have different names than the
methods they override. For example, ordinarily, if a method overrides Object.ToString(), Dotfuscator would not be able to
rename it without breaking the override relationship, since typically the Object class is not in an input assembly and
therefore its ToString() would not be renamed. With this setting, Dotfuscator can rename the overriding method and
introduce metadata that tells the CLR that the method is meant to override Object.ToString(). For more information, see
Introduce Explicit Method Overrides When Renaming.

Introduce Explicit Method Overrides

<renaming>
<!-- Allow overriding methods to have different names than the
 methods they override -->
 <option>explicitoverrides</option>
</renaming>

Dotfuscator User's Guide 192

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

If you want to rename overloaded methods with the same name, then you would not use the <explicitoverrides>
renaming option.

Note: Renaming options are not case sensitive.

2.6.3.9.3 Renaming Exclusion List
This section provides a dynamic way to fine tune the renaming of the input assemblies. It can contain a list of exclusion
rules that are applied at runtime. If a rule selects a given class, method, field, property, or event then that item is not
renamed.

These rules are applied in addition to rules implied by global options such as the library option.
The rules are logically OR-ed together, so any item that is selected by at least one rule is not renamed.
The exclusion list has support for excluding names by type, method, field, property, event, assembly, module, or
namespace.
Each type of rule is explained in detail in the section on identifier renaming.

2.6.3.9.4 Renaming Referenced Rules
Referenced rules allow you to import rules from an external file so they can be shared among configurations.
Dotfuscator’s Built-In renaming rules use this to import rules from %ProgramData%\PreEmptive
Solutions\Common\dotfuscatorReferenceRule_v1.1.xml. The rule is referenced via the rulekey attribute whose value
is a GUID defined by the rule being referenced.

Reference Rule List

<referencerulelist>
 <referencerule rulekey="{0D471A86-E98F-4493-849B-85BD4CC884A1}"/>
 <referencerule rulekey="{C9D9BF84-4F0D-4e9f-B3EC-3038235AE741}"/>
</referencerulelist>

2.6.3.9.5 Output Mapping File
This feature of Dotfuscator produces a log of all the renaming mappings used by Dotfuscator during a specific run. It also
provides a statistics section.

Specifying this option instructs Dotfuscator’s renamer to keep track of how things were renamed for both your immediate
review and for possible use as input in a future Dotfuscator run. A file is created from this option that is then used in the
incremental input file option.

Accidental loss of this file can destroy your chances of incrementally updating your application in the future. Therefore,
proper backup of this file is crucial. For this reason, Dotfuscator automatically renames an existing map file with the same
name before overwriting it with a new version of the map file.

Dotfuscator User's Guide 193

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

If you do not want Dotfuscator to rename existing map files before overwriting, set the attribute overwrite="true".

The format of the mapping file is discussed in the section on identifier renaming.

Setting the Attribute to Overwrite

<renaming>
...
<mapping>
 <mapoutput overwrite="true">
 <file dir="c:\work" name="testout.xml"/>
 </mapoutput>
</mapping>
</renaming>

2.6.3.9.6 HTML Renaming Report
The output mapping file is natively formatted as an XML document suitable for parsing. For a human readable renaming
report, you can tell Dotfuscator to transform the output mapping file into an HTML formatted document. Dotfuscator will
apply a predefined XSL document to the mapping file to accomplish the transformation. If you do not like the default
HTML report, you can optionally specify your own XSL document to use for the transformation. The output report is
placed in the same directory as the XML formatted mapping file. The filename will be the same as the XML file, but will
have a .html extension rather than a .xml extension.

Example Title

<renaming>
...
<mapping>
 <mapoutput overwrite="true">
 <file dir="c:\work" name="testout.xml"/>
 <transform>
 <!-- specifying your own XSL file is optional -->
 <file dir="c:\mytransforms" name="map.xsl"/>
 </transform>
 </mapoutput>
</mapping>
</renaming>

2.6.3.9.7 Input Mapping File
In Dotfuscator, the input mapping file allows you to import names that Dotfuscator created in a previous run (a process
known as Incremental Obfuscation). Dotfuscator will make a best-effort attempt to rename classes, methods, and fields to
the names indicated in the input mapping file.

Dotfuscator User's Guide 194

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The <mapinput> element allows you to specify the input mapping file. It also has an optional obfuscatereferences
attribute, which defaults to "true" if not present. This attribute controls how Dotfuscator handles names contained in the
input mapping file that are not defined within the set of input assemblies. When true, references to these names within
the current set of input assemblies will be renamed.

Input Mapping File

<renaming>
...
<mapping>
 <mapinput obfuscatereferences="true">
 <file dir="c:\work" name="testin.xml"/>
 </mapinput>
</mapping>
</renaming>

2.6.3.10 Control Flow Obfuscation Section
The control flow section allows you to specify options that are specific to control flow obfuscation, including fine-grained
rules for excluding items from control flow obfuscation.

The control flow section is optional. If not present, control flow obfuscation is disabled.

2.6.3.10.1 Control Flow Obfuscation Level
The level of control flow obfuscation may be set to one of three values: "low", "medium", or "high". These levels
correspond to the aggressiveness of Dotfuscator’s control flow obfuscation algorithms. A higher level generally results in
stronger obfuscation at the cost of increased code size and degraded performance. This is because more aggressive
control flow obfuscation involves adding more branch instructions to the code.

The level of control flow obfuscation applies globally to all methods being obfuscated.

2.6.3.10.2 Control Flow Obfuscation Options
The "disable" option is primarily for convenience and troubleshooting purposes. When set, Dotfuscator skips control
flow obfuscation altogether, regardless of what’s in the rest of the control flow section.

Example Title

<controlflow level="high">
<!-- Skip control flow, ignoring rest of section-->
<option>disable</option>
...
</controlflow>

Dotfuscator User's Guide 195

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Note: Control Flow options are not case sensitive.

2.6.3.10.3 Control Flow Exclusion List
This section provides a dynamic way to fine tune control flow obfuscation of the input assemblies. It can contain a list of
exclusion rules that are applied at runtime. If a rule selects a given class or method, then that item is not subject to control
flow obfuscation.

Note: The library option has no effect on control flow obfuscation, unlike renaming.

The rules are logically OR-ed together, so any item selected by at least one rule is not subject to control flow obfuscation.

The exclusion list has support for excluding methods by type, method, assembly, module, or namespace.

Each type of rule is explained in detail in the section on control flow obfuscation.

2.6.3.11 String Encryption Section
The string encryption section allows you to specify options that are specific to string encryption, including fine-grained
rules for specifying types and methods subject to string encryption.

The string encryption section is optional. If not present, string encryption is disabled.

2.6.3.11.1 String Encryption Options
This option is primarily used for convenience and troubleshooting purposes. When set, Dotfuscator skips string encryption
altogether, regardless of what’s in the rest of the string encryption section.

User String Encryption Options

<stringencrypt>
<!--Skip string encryption, ignoring rest of section-->
<option>disable</option>
...
</stringencrypt>

Note: String Encryption options are not case sensitive.

2.6.3.11.2 String Encryption Inclusion List

Dotfuscator User's Guide 196

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

This section provides a dynamic way to fine tune string encryption of the input assemblies. It contains a list of inclusion
rules that are applied at runtime. If a rule selects a given class or method, then that item is subject to string encryption.

Note: Unlike renaming, the library option has no effect on string encryption.

The rules are logically OR-ed together, so any item that is selected by at least one rule is subject to string encryption.

The inclusion list has support for including methods by type, method, assembly, module, or namespace.

Each type of rule is explained in detail in the section on user string encryption.

2.6.3.12 Removal Section (i.e. Pruning)
The <removal> section allows you to specify options that are specific to the pruning functionality and fine-grained rules
for specifying types and members subject to pruning.

The <removal> section is optional. If not present, removal is disabled and no pruning occurs.

2.6.3.12.1 Disable Removal Option
This option is used primarily for convenience and troubleshooting purposes. When set, Dotfuscator skips the pruning step
altogether, regardless of what’s in the rest of removal section.

Disable Removal Option

<removal>
<!--Skip removal (pruning), ignoring rest of section-->
<option>disable</option>
...
</removal>

Note: Removal options are not case sensitive.

2.6.3.12.2 ConstOnly Option
This option is used to enable Constant-Only pruning. In this mode, only constant declarations will be pruned. Unused
types, methods, and fields will be propagated to the output assembly.

Disable Removal Option

Dotfuscator User's Guide 197

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

<removal>
<!--Use Constant-Only pruning instead of full pruning-->
<option>constonly</option>
...
</removal>

Note: Removal options are not case sensitive.

2.6.3.12.3 Removal Trigger List
In the context of pruning, triggers are starting points for the static dependency analysis that Dotfuscator performs in order
to determine which types, methods, and fields are used by your code. In other words, these are the entry points for your
application or library.

Triggers are analyzed by Dotfuscator to determine which classes, methods, and fields are required for your application or
library to function. For example, all methods called by your triggers, and methods called by those methods, are deemed
required by Dotfuscator. That is, if you tell Dotfuscator a specific main method is required, then all the methods that main
method calls are required as well.

A trigger list is not required, but is honored, if the library global option is used.

The trigger list is used in addition to triggers implied by global options such as the library option.

The trigger list specifies triggers in the same way that elements are selected for exclusion and inclusion in other parts of
the configuration. It contains a list of rules that are applied at runtime. If a rule selects a given method or field, then that
becomes a trigger.

The rules are logically OR-ed together, so any item that is selected by at least one rule becomes a trigger.

The trigger list has support for specifying fields, methods, properties, and events by type, method, assembly, module, or
namespace.

Each type of rule is explained in detail in the section on pruning.

2.6.3.12.4 Conditional Includes List
A type must be conditionally included if it is not detectable by the static dependency analysis, i.e. if it is dynamically
loaded; meaning, the type itself is included in the dependency analysis, but its members are still subject to pruning.
Please see Understanding Include Triggers and Conditional Includes for a deeper explanation of this feature.

This section provides a dynamic way to specify conditionally included types. It contains a list of inclusion rules that are
applied at runtime. If a rule selects a given type, then that item is conditionally included.

The rules are logically OR-ed together, so any item that is selected by at least one rule will be conditionally included.

Dotfuscator User's Guide 198

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The inclusion list has support for selecting types by name, assembly, module, or namespace.

Each type of rule is explained in detail in the section on pruning.

2.6.3.12.5 Removal Referenced Rules
Referenced rules allow you to import rules from an external file so they can be shared among configurations.
Dotfuscator’s Built-In removal rules use this to import rules from %ProgramData%\PreEmptive
Solutions\Common\dotfuscatorReferenceRule_v1.4.xml. The rule is referenced via the rulekey attribute whose value
is a GUID defined by the rule being referenced.

Referenced Rules

<referencerulelist>
 <referencerule rulekey="{0D458786-E99F-4593-849B-8512493884A1}"/>
 <referencerule rulekey="{C1159284-4F0D-4e9f-B3EC-303828419741}"/>
</referencerulelist>

2.6.3.12.6 Removal Report
The removal report provides a summary of all the elements removed by Dotfuscator during a specific run, including a
statistics section. Dotfuscator writes the removal report in a parsable and easily transformed XML format. Like the
renaming map file, Dotfuscator has a default transform that can generate a human readable HTML formatted version of
the report.

Dotfuscator automatically renames an existing removal report with the same name before overwriting it with a new
version.

If you do not want Dotfuscator to rename existing removal reports before overwriting, set the attribute
overwrite="true".

The XML format of the removal report file is discussed in the section on pruning.

Removal Report

<removal>
<removalreport overwrite="true">
 <file dir="c:\work" name="report.xml"/>
 <transform>
 <!-- specifying your own XSL file is optional -->
 <file dir="c:\mytransforms" name="removal.xsl"/>
 </transform>
</removalreport>
</removal>

Dotfuscator User's Guide 199

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.6.3.13 Linking Section
The linking section allows you to specify options that are specific to the assembly linking. For more information about the
linker, see Assembly Linking.

The linking section is optional. If not present, assembly linking is disabled.

2.6.3.13.1 Disable Linking Option
This option is used primarily for convenience and troubleshooting purposes. When set, Dotfuscator skips the linking step
altogether, regardless of what’s in the rest of the linking section.

Disable Linking Option

<linking>
<!--Skip linking, ignoring rest of section-->
<option>disable</option>
...
</linking>

Note: Linking options are not case sensitive.

2.6.3.13.2 Linked Assemblies
A <linkedassembly> element specifies that one or more input assemblies should be linked into a specified output
assembly. The linking section can contain multiple <linkedassembly> elements; therefore, you can use the linker to
create multiple output assemblies. The only limitation is that you cannot link the same input assembly into multiple
output assemblies.

The <linkedassembly> element contains sub-elements that allow you to specify options for the link step, such as the
name mangling policy, the primary assembly, the list of input assemblies, and the name of the output assembly.

Options

Currently the only option you can specify is the name mangling policy, which may be one of:

donotmangle
manglesilently
mangleandwarn

Dotfuscator User's Guide 200

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Primary Assembly

The <primaryinput> element identifies the prime assembly whose manifest information is used to create the output
assembly’s manifest. This assembly must also be listed in the subsequent <assemblylist> element.

Assemblies to Link

The assemblies you want to link are listed using an <assemblylist> element. Each must also be listed as an input
assembly.

Output Assembly

The <outputassembly> element allows you to specify a name for the output assembly and an optional entry point
method. The assembly is written to the destination directory with the given name.

Example

The example <linkedassembly> element specifies that input assemblies Driver.exe and LibraryC.dll should be
linked into an assembly named out.exe. The entry point method is explicitly set to the Main method in the Driver
assembly.

Note: An entry point only needs to be explicitly specified in ambiguous cases. For example, the output assembly is
an .exe and the input assemblies contain more than one entry point.

Linked Assembly

Dotfuscator User's Guide 201

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

 <linkedassembly>
 <option>donotmangle</option>
 <primaryinput>
 <assembly>
 <file dir="${configdir}" name="Driver.exe" />
 </assembly>
 </primaryinput>
 <assemblylist>
 <assembly>
 <file dir="${configdir}" name="Driver.exe" />
 </assembly>
 <assembly>
 <file dir="${configdir}" name="LibraryC.dll" />
 </assembly>
 </assemblylist>
 <outputassembly name="out.exe">
 <entrypoint>
 <type name="Driver.Form1">
 <method name="Main" signature="" />
 </type>
 </entrypoint>
 </outputassembly>
 </linkedassembly>

2.6.3.14 PreMark Section
The premark section allows you to specify options that are specific to watermarking. For more information about
watermarking assemblies, see Watermarking.

Note: The premark section is optional. If not present, watermarking is disabled.

2.6.3.14.1 PreMark Options
The watermarker supports several configuration options.

The usepassphrase option tells the watermarker to encrypt the watermark string before applying it to the selected
assemblies.

The truncatestring option tells the watermarker to truncate the watermark string if it will not fit in a given assembly.
The default action is to halt the build if the watermark string is too large. See Watermark String Length for more details.

Dotfuscator User's Guide 202

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The disable option is used primarily for convenience and troubleshooting purposes. When set, Dotfuscator skips the
watermarking step altogether, regardless of what’s in the rest of the premark section.

PreMark Options

<premark>
<!--Skip watermarking, ignoring rest of section-->
<option>disable</option>
<!--Encrypt the watermark string -->
<option>usepassphrase</option>
<!--Truncate the string and continue if the string is too big -->
<option>truncatestring</option>
...
</premark>

Note: PreMark options are not case sensitive.

2.6.3.14.2 PreMark Elements
The premark section contains sub-elements that allow you to specify which input assemblies you would like to watermark,
a passphrase to use if you are encrypting your watermark string, a character encoding to use, and the watermark string
itself.

Assemblies to Watermark

The assemblies you want to watermark are listed using an <assemblylist> element. Each must also be listed as an
input assembly.

<passphrase>

The <passphrase> element specifies the passphrase to use when encrypting the watermark string. The watermark string
will be encrypted if you have set the usepassphrase option and the passphrase itself is set.

<encoding>

The <encoding> element specifies the character encoding, or character map, to use when encoding the watermark
string. The <encoding> element has a name attribute that you can set to a supported character map. Character maps
and their names are described in the Character Maps section.

<watermark>

The <watermark> element specifies the string that you want to apply to the selected assemblies. The string is first
encoded using the character map, then optionally encrypted.

Dotfuscator User's Guide 203

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Example

This example configures PreMark to apply a watermark to MyApp.exe. The watermark string, MY WATERMARK is first
encoded using the 6bit-a character map, then encrypted with the passphrase "mommy".

PreMark Elements

 <premark>
 <option>usepassphrase</option>
 <option>truncatestring</option>
 <assemblylist>
 <assembly>
 <file dir="${configdir}" name="MyApp.exe" />
 </assembly>
 </assemblylist>
 <passphrase>mommy</passphrase>
 <encoding name="6bit-a" />
 <watermark>MY WATERMARK</watermark>
 </premark>

2.6.3.15 Signing Section
The signing section allows you to specify if and how you want Dotfuscator to sign your strongly named output assemblies.
For more information about assembly signing, see Dotfuscating Strong Named Assemblies.

The signing section is optional. If not present, your strongly named input assemblies will not be resigned after
Dotfuscation, and Authenticode Digital Signing will not be applied.

Specifying <key> Element

You can specify the key or key pair that you want Dotfuscator to use when signing with a <key> element. A <key>
element can contain either a <file> or a <container> sub element. A <file> element references the file containing
the key or key pair. A <container> element has a "name" attribute that specifies the name of the key container.

<file> Element

 <key>
 <file dir="c:\temp" name="key.snk" />
 </key>

<container> Element

 <key>
 <container name="foo"/>
 </key>

Dotfuscator User's Guide 204

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

<resign> Element

To resign an assembly that was already signed before Dotfuscation, use a <resign> element. If the assembly has custom
attributes that specify the key to use, you do not need a <key> element. If you wish to ignore the attributes, set the
dontuseattributes option and provide a <key> element. If our assembly does not have custom attributes that specify
the key, you must provide a <key> element.

This example tells Dotfuscator to ignore any custom attributes that specify the key and instead manually specifies a key
file.

<resign> Element

 <signing>
 <resign>
 <option>dontuseattributes</option>
 <key>
 <file dir="c:\temp" name="key.snk" />
 </key>
 </resign>
 ...
 </signing>

<delaysign> Element

If your input assembly is delay signed and you want Dotfuscator to automatically complete the signing process, you can
provide a <delaysign> element with a <key> sub-element.

<delaysign> Element

 <signing>
 ...
 <delaysign>
 <key>
 <file dir="c:\temp" name="key.snk" />
 </key>
 </delaysign>
 </signing>

2.6.3.16 Digital Signing Section
The digitalsigning section allows you to specify if and how you want Dotfuscator to perform Authenticode Digital Signing
on your output assemblies.

The digitalsigning section is optional. If not present, Authenticode signing will not be applied.

Dotfuscator User's Guide 205

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Specifying <pfx> Element

You can specify the PKCS #12 file that was provided to you by your code-signing authority for use in Authenticode
signing with a <pfx> element. A <pfx> element contains a <file> sub element which describes the location of the
PKCS #12 (.pfx) file containing your code-signing certificate. The <pfx> element also has a password attribute which
specifies the password used to unlock the certificate.

<pfx> Element

 <pfx password="secret123">
 <file dir="c:\temp" name="authenticode.pfx" />
 </pfx>

<digitalsigning> Element

To perform Authenticode signing on output assemblies, you can provide a <digitalsigning> element with a <pfx>
sub-element.

The disable option is primarily for convenience and troubleshooting purposes. When set, Dotfuscator skips
Authenticode signing altogether, regardless of what’s in the rest of the signing section.

The <timestampurl> sub element provides the ability for you to specify the URL of an Authenticode timestamp service.
This URL will be accessed during Dotfuscator's signing process, and will provide additional data which will allow your
assemblies' Authenticode signatures to remain valid after your code-signing certificate has expired. This element is
optional. If omitted, this additional data will not be included, and your assemblies' Authenticode signatures will become
invalid once your code-signing certificate expires.

<digitalsigning> Element

 <digitalsigning>
 <!--Skip Authenticode signing, ignoring rest of section-->
 <option>disable</option>
 <!--Specify the certificate to use for Authenticode signing-->
 <pfx password="secret123">
 <file dir="c:\temp" name="authenticode.pfx" />
 </pfx>
 <!--Optionally specify the URL to the timestamp service-->
 <timestampurl>http://timestamp.comodoca.com/authenticode</timestampurl>
 </digitalsigning>

2.6.3.17 EventList Section
The eventlist section allows you to specify pre and post build events. For more information about Dotfuscator’s build
events, see Build Events.

Dotfuscator User's Guide 206

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The eventlist section is optional.

<event> Element

An event is essentially a program that Dotfuscator runs at a particular point in its build sequence. You can specify the
program name, working directory, and command line arguments. In addition, an event can support additional
configuration settings using an <option> element.

An <event> element has a type attribute. Currently Dotfuscator understands two event types: prebuild and
postbuild. The program to run is specified using a <program> element.

Event <program> Element

The program to run when an event occurs is specified with the <program> element. It contains a <file> element
specifying the program and its location, as well as an <environment> element that specifies command line arguments
and working directory.

Like files and directories, the commandline attribute can contain property macros.

Property Macros

 <program>
 <file dir="c\temp" name="copyfiles.bat" />
 <environment commandline="${myproperty}" workingdir="c:\temp" />
 </program>

Pre-Build Event Options

The pre-build event supports one option that can be set using an <option> element nested within the <event> element
for the pre build event.

Option

haltonfail If the build event program returns a non-zero error code, halt the Dotfuscator build.

Post-Build Event Options

The post-build event supports several options that can be set using an <option> element nested within the <event>
element for the post build event.

Option

haltonfail If the build event program returns a non-zero error code, halt the Dotfuscator
build.

runoneachmodule Run the post build event once for each output module.

always Run the post build event all the time, regardless of the success or failure of the

Dotfuscator User's Guide 207

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Dotfuscator build.

buildfails Run the post build event only when the Dotfuscator build fails.

buildsuccessful Run the post build event only when the Dotfuscator build is successful.

Example

The following example shows an XML configuration file fragment that sets up pre- and post-build events. The pre-build
event executes the program c:\temp\copyfiles.bat with no arguments. If the build is successful, then the post-build event
executes the program PEVerify on each output assembly. Notice that the output assembly name is passed as a property
to PEVerify.

Example XML Configuration File Fragment

 <eventlist>
 <event type="prebuild">
 <program>
 <file dir="c\temp" name="copyfiles.bat" />
 <environment commandline="" workingdir="c:\temp" />
 </program>
 </event>
 <event type="postbuild">
 <option>runoneachmodule</option>
 <option>haltonfail</option>
 <program>
 <file dir="C:\Program Files\Microsoft Visual Studio .NET 2003\SDK\v1.1\Bin"
name="PEVerify.exe" />
 <environment commandline="${dotf.current.out.module}"
 workingdir="${dotf.destination}" />
 </program>
 </event>
 </eventlist>

2.6.3.18 PreEmptive Analytics Section
The PreEmptive Analytics section allows you to specify options that control how Dotfuscator processes instrumentation
attributes in the input assemblies. For more information about instrumentation and PreEmptive Analytics,
see Instrumentation (Tamper, Shelf Life, Exception, Analytics).

The PreEmptive Analytics section is optional.

The sos element defines a mergeruntime attribute, which can be true (default) or false. When true, Dotfuscator
merges the PreEmptive Analytics library into one of the input assemblies. When false, Dotfuscator writes the runtime
library DLL to the destination directory along with the other input assemblies.

Dotfuscator User's Guide 208

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

There are four additional options for PreEmptive Analytics: Enable PreEmptive Analytics, Send Analytics Messages,
Don’t Send Tamper Messages, and Send Shelf Life Messages.

The sendanalytics option tells Dotfuscator to add code to marked assemblies that sends application analytics startup,
shutdown, and feature messages to a PreEmptive Analytics Endpoint. Unsetting this option is useful if you want to send
tamper messages without analytics.

The dontsendtamper option tells Dotfuscator not to send tamper notifications if tampering is detected. This is useful if
you want to detect tampering and have your application react locally, but you do not want the application to send
messages to a PreEmptive Analytics Endpoint.

The sendshelflife option tells Dotfuscator to add code to marked assemblies that adds logic to send shelf life status
messages. These include the warning, expiration, and sign of life messages.

The disable option is used primarily for convenience and troubleshooting purposes. When set, Dotfuscator skips the
attribute processing altogether, regardless of what attributes are in the input assemblies and what options are in the rest
of the sos section.

PreEmptive Analytics Processing

 <sos mergeruntime="true">
 <!-- Disable PreEmptive Analytics processing -->
 <option>disable</option>
 <!-- Send startup, shutdown, and feature messages -->
<option>sendanalytics</option>
 <!-- Do not send tamper messages -->
 <option>dontsendtamper</option>
 <!-- Send shelf life messages -->
<option>sendshelflife</option>
 </sos>

2.6.3.19 Extended Attributes Section
Dotfuscator allows you to tag methods or assemblies with extended attributes without modifying the application source
code. Extended attributes can modify existing supported custom attributes in the code, or act as new instances of
supported attributes. As it processes and transforms your application, Dotfuscator treats extended attributes the same as
their custom attribute counterparts.

Using a <codetransformlist> element, you can also map attributes, even those embedded in code, to a specific
supported code transform using extended attributes. This supports attribute overloading, wherein the same set of
attributes can drive multiple transforms such as Application Analytics.

Most extended attributes may be set at the method level. To identify the method, its defining type, name, and signature
must be specified.

Dotfuscator User's Guide 209

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Supported attribute arguments may be specified using a <propertylist> element.

Any attribute listed in the custom attribute reference is a supported attribute.

Supported Attributes

<extattributes>
<extattribute name="PreEmptive.Attributes.FeatureAttribute">
 <codetransformlist>
 <codetransform name="analytics"/>
 </codetransformlist>
 <type name = "MyApplicaton.MainForm">
 <method name="Main" signature="string[]" />
 </type>
 <propertylist>
 <property name="Name" value="Execute"/>
 <property name="ActivationStatusSinkElement" value="field"/>
 <property name="ActivationStatusSinkName" value="activated"/>
 </propertylist>
</extattribute>
</extattributes>

Extended runtime attributes such as ApplicationAttribute, BinaryAttribute, and BusinessAttribute may be
set at the assembly level. To identify the assembly, its name must be provided in an assembly element:

Extended Runtime Attributes

<extattributes>
 <extattribute name="PreEmptive.Attributes.ApplicationAttribute">
 <codetransformlist>
 <codetransform name="sosruntime" />
 </codetransformlist>
 <assembly>
 <file dir="${configdir}" name="MyApp.exe" />
 </assembly>
 <propertylist>
 <property name="Version" value="" />
 <property name="Name" value="" />
 <property name="ApplicationType" value="" />
 <property name="Guid" value="00000000-0000-0000-0000-000000000000" />
 </propertylist>
 </extattribute>
</extattributes>

2.6.3.20 SmartObfuscation Section

Dotfuscator User's Guide 210

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Smart Obfuscation allows Dotfuscator to auto detect elements that cannot be renamed or removed based on specific
rules for the application type. Smart Obfuscation is turned on by default, and in most cases should be left on. It can be
turned off by setting an option in this section in cases where the user believes that aggressive obfuscation will not hurt
the application.

Smart Obfuscation includes a reporting facility and this section allows you to configure the verbosity of the report.
Allowed values for the verbosity attribute are all, warningsonly, and none. The default value is all.

The Smart Obfuscation report can optionally be written to disk. Dotfuscator automatically renames an existing Smart
Obfuscation report with the same name before overwriting it with a new version. If you do not want Dotfuscator to
rename the existing Smart Obfuscation report before overwriting, set the attribute overwrite="true".

The XML format of the Smart Obfuscation report is discussed in the Smart Obfuscation section.

SmartObfuscation

<smartobfuscation>
 <!—- Skip smart obfuscation, ignoring rest of section -->
 <option>disable</option>
 <smartobfuscationreport verbosity="all" overwrite="true">
 <!-- Specifying a destination report file is optional -->
 <file dir="c:\myproject" name="smartobfuscation.xml"/>
 </smartobfuscationreport>
</smartobfuscation>

2.6.3.21 A Note about XML Configuration Files
Dotfuscator uses XML formatted documents for the configuration and mapping files. When loaded, these documents are
validated according to the Document Type Definitions (DTDs) specified in the doctype. In order to perform the
validation, Dotfuscator must be able to access the relevant DTD.

Dotfuscator takes the following steps to locate DTDs:

1. If the DTD URI specifies a local file, Dotfuscator searches for it in the indicated location. If it is not found, an error
occurs.

2. If the DTD URI specifies a web resource, Dotfuscator first searches its cache for a file with the same name as that
specified in the URI. Dotfuscator keeps its cache in the %ProgramData%\PreEmptive Solutions\Common
directory.

3. If not found, Dotfuscator accesses the URI to obtain the DTD. If found, Dotfuscator caches the DTD so subsequent
requests will not need to access the network. If the DTD is not found, or if Dotfuscator is unable to retrieve it from
the network, an error occurs.

2.6.3.22 Custom Rules Reference

Dotfuscator User's Guide 211

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Dotfuscator allows you to customize obfuscation rules for your application. Both Inclusion Rules and Exclusion Rules
provide a dynamic way to fine tune the renaming, control flow obfuscation, string encryption, and pruning of the input
assemblies. These rules are applied in addition to rules implied by global options such as library and they are logically OR-
ed together.

In this section

Exclusion Rules

Inclusion Rules

2.6.3.22.1 Exclusion Rules
The exclude list section provides a dynamic way to fine tune the renaming and control flow obfuscation of the input
assemblies. The user specifies a list of rules that are applied at runtime. If a rule selects a given class, method, or field, then
that item is not renamed or is excluded from control flow obfuscation.

These rules are applied in addition to rules implied by global options such as library.

Rules are logically OR-ed together.

Regular Expressions (REs) may be used to select namespaces, types, methods or fields. The optional regex attribute is
used for this purpose. The default value of regex is false. If regex is true then the value of the name attribute is
interpreted as a regular expression; if it is false, the name is interpreted literally. This is important since regular expressions
assign special meaning to certain characters, such as the period. Here are some examples of simple, regular expressions:

Here are some examples of simple, regular expressions:

.* Matches anything
MyLibrar. Matches MyLibrary, MyLibrari, etc.
My[\.]Test[\.]I.* Matches My.Test.Int1,My.Test.Internal, etc.
Get.* Matches GetInt, GetValue, etc.
Get* Matches Ge,Get,Gett,Gettt, etc.

Please refer to the .NET Framework documentation for a full description of the regular expression syntax.

2.6.3.22.1.1 Excluding Namespaces
This option excludes all types and their members in a given namespace. You can use a regular expression to specify the
namespace.

Regular Expression

<namespace name="My.Excluded.Namespace"/>

Dotfuscator User's Guide 212

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.6.3.22.1.2 Excluding Types
This option excludes a type by name or by attribute specifier. You can use a regular expression to specify the type name.
Type names must be fully qualified names. Inner (nested) classes are specified by using the ‘/’ as a delimiter between
outer and inner class. For example:

Inner (Nested) Classes

<type name="Library.Class1/NestedClass"/>

Attribute specifiers are selected or deselected with the speclist attribute. The speclist attribute is a comma-
separated list of legal attribute specifiers for types. The legal values are:

Legal Values

abstract
interface
nestedassembly
nestedfamily
nestedfamorassem
nestedprivate
nestedpublic
notpublic
public
sealed
serializable
enum

A ‘-‘ preceding an attribute specifier negates the rule (i.e. it excludes all classes that do not have the specified attribute). A
‘+’ may be specified but is not required. The rules implied in this list are logically AND-ed together (that is, the set of
excluded types is the intersection of all types that match each rule.). For instance, the following rule excludes any type that
is public AND sealed.

Exclude Public and Sealed Type Rule

<type name=”.*” speclist=”+public,+sealed” regex=”true”/>

The <type> element may also be used to select a type in order to specify rules for field, method, property, and event
exclusion within it. This allows members to be excluded while not excluding their owning type. The optional
excludetype attribute is used for this purpose. If not specified, the default value is true, meaning that the type name
will be excluded from renaming or control flow obfuscation.

Specify Rules for Field, Method, Property, and Event Exclusion

Dotfuscator User's Guide 213

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

<type name="MyCo.Test.MyOtherTest" excludetype="false">
<!-- methods and fields excluded here -->
...
</type>

If a Type rule contains no Property or Event rules, then all property and event names in that excluded type are preserved.
If a Type rule contains one or more Property rules, then only those property names will be preserved and all others will be
removed. If a Type rule contains one or more Event rules, then only those event names will be preserved and all others will
be removed.

Remember: If a type is not excluded and the library option is not set, then Dotfuscator removes property and event
names.

Applies only to Renaming:

Type rules can be applied to entire inheritance hierarchies by specifying the applytoderivedtypes attribute. Setting
the value of this attribute to true will apply the type rule and any Method, Field, Property, Event, Custom Attribute, or
Supertype rules that it contains to the selected type and all types that derive from it. If not specified, the default value is
false, meaning that the type rule will only be applied to the specified type.

2.6.3.22.1.3 Excluding Methods
Methods may be excluded by first selecting the type using the <type> element, then providing a rule for selecting
methods to exclude. Methods may be excluded by name and attribute specifier, as well as by signature. Allowed attribute
specifiers are:

Allowed attribute specifiers are:

abstract
assembly
family
familyorassembly
final
private
public
static
virtual

If the attribute specifier is not set explicitly, then the speclist attribute will not be used as a matching criterion. The
following example selects all public instance methods beginning with Set:

The following example selects all public instance methods beginning with Set:

<method regex="true" name="Set.*" speclist="+public,-static"/>

Dotfuscator User's Guide 214

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Method signatures are specified using the signature attribute. A signature specifies both the return type and the
parameter types of the method:

Return Types and Parameter Types

signature=”” <!-- empty signature -->

signature=”string(int,MyClass,MyClass[])”

If the signature is not set explicitly, then the method signature will not be used as a matching criterion.

The following example selects a method by signature:

Method by Signature

<method name="DoIt" signature="string(int, System.Console,
System.Collection.ICollection, float[])"/>

Global methods may be specified by using a special type selector with the name "Module:mod_name" where mod_name
is the name of the module containing the global method.

2.6.3.22.1.4 Excluding Fields
Field exclusion is valid for Renaming only. Fields may be excluded by first selecting the type using the <type> element,
then providing a rule for selecting fields to exclude. Fields may also be excluded by name and attribute specifier. Allowed
attribute specifiers are:

Allowed Attribute Specifiers are:

public
private
static
assembly
family
familyandassembly
familyorassembly
notserialized

If the attribute specifier is not set explicitly, then field attribute will not be used as a matching criterion. The following
example selects all static fields starting with "ENUM_":

All Static Fields Starting with "ENUM":

<field regex="true" name="ENUM_.*" speclist="+static"/>

Field signatures are specified using the signature attribute. A signature specifies the type of the field:

Dotfuscator User's Guide 215

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

A signature specifies the type of the field:

signature="" <!-- empty signature -->

signature="int"

If the signature is not set explicitly, then the field type will not be used as a matching criterion.

Global fields may be specified by using a special type selector with the name Module:mod_name where mod_name is the
name of the module containing the global field.

2.6.3.22.1.5 Excluding Properties
Property exclusion is valid for Renaming only. Property rules are qualified by type rules, so they appear in the rules view as
children of type nodes. A property rule will select all properties (in all types matched by the parent type rule) that match
your criteria. Supported matching criteria include property name and property attributes. Allowed attribute specifiers are:

Allowed Attribute Specifiers are:

public
private
static
assembly
family
familyandassembly
familyorassembly

If the attribute specifier is not set explicitly, then the property attribute will not be used as a matching criterion. The
following example selects all properties starting with "Sample":

The following example selects all properties starting with "Sample":

<propertymember regex="true" name="Sample.*"/>

Property signatures are specified using the signature attribute. A signature specifies the type of the property:

A signature specifies the type of the property:

signature="" <!-- empty signature -->

signature="int"

If the signature is not set explicitly, then the property type will not be used as a matching criterion.

Global properties may be specified by using a special type selector with the name Module:mod_name where mod_name
is the name of the module containing the global property.

Dotfuscator User's Guide 216

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.6.3.22.1.6 Excluding Events
Event exclusion is valid for Renaming only. Event rules are qualified by type rules, so they appear in the rules view as
children of type nodes. An event rule will select all events (in all types matched by the parent type rule) that match your
criteria. Supported matching criteria include event name and event attributes. Allowed attribute specifiers are:

Allowed attribute specifiers are:

public
private
static
assembly
family
familyandassembly
familyorassembly

If the attribute specifier is not set explicitly, then the event attribute will not be used as a matching criterion. The following
example selects all events starting with "On":

The following example selects all events starting with "On":

<eventmember regex="true" name="On.*"/>

Global events may be specified by using a special type selector with the name Module:mod_name where mod_name is
the name of the module containing the global event.

2.6.3.22.1.7 Excluding By Custom Attribute
Types, methods, fields, and properties may be selectively excluded by custom attribute. A custom attribute rule selects an
item (type, method, field or property) based on matching against the names of custom attributes that annotate the item.
One or more custom attribute rules may be nested inside any rule that selects types, methods, fields, or properties.

A type, method, field, or property rule may have multiple custom attribute rules associated with it. In this case, an item is
selected if at least one of the custom attribute rules selects it.

The following example selects all types that are annotated with either MyCustomAttribute or MyOtherCustomAttribute:

Types Annotated with MyCustomAttribute or MyOther CustomAttribute:

<type name=".*" excludetype="false" regex="true>
 <customattribute name="MyCustomAttribute"/>
...<customattribute name="MyOtherCustomAttribute"/>
</type>

Dotfuscator User's Guide 217

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Custom attribute rules can also be written using regular expressions to match custom attribute names. The following
example is another way to select all types annotated with either MyCustomAttribute or MyOtherCustomAttribute:

Types Annotated with MyCustomAttribute or MyOther CustomAttribute:

<type name=".*" excludetype="false" regex="true>
 <customattribute name="My.*CustomAttribute" regex="true"/>
</type>

The next example shows how to exclude all methods annotated with a custom attribute named MyCustomAttribute:

Exclude Annotated Methods

<type name=".*" excludetype="false" regex="true">
 <method name=".*" regex="true">
 <customattribute name="MyCustomAttribute"/>
 </method>
</type>

Custom attribute rules can be applied to subtypes or overriding methods and properties by specifying the
allowinheritance attribute. When the value of this attribute is set to true then subtypes or overriding methods and
properties with the specified custom attribute will also be excluded.

2.6.3.22.1.8 Excluding By Supertype
Types may be selectively excluded by supertype. A supertype rule selects a type based on matching against the names of
types that the given type inherits from. One or more supertype rules may be nested inside any rule that selects types.

A type rule may have multiple supertype rules associated with it. In this case, an item is selected if at least one of the
supertype rules selects it.

The following example selects all types that inherit from MySupertype:

All Types that Inherit from MySupertype:

<type name=".*" excludetype="false" regex="true">
 <supertype name="MySupertype"/>
</type>

Supertype rules can also be written using regular expressions to match supertype names. The following example shows
how to select all types that inherit from either MySupertype or MyOtherSupertype:

All Types that Inherit from MySupertype or MyOtherSupertype:

<type name=".*" excludetype="false" regex="true">
 <supertype name="My.*Supertype" regex="true"/>
</type>

Dotfuscator User's Guide 218

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.6.3.22.1.9 Excluding Assemblies
Assemblies may be excluded by name. When an assembly is excluded, all types and members within any of the assembly’s
modules are excluded. It makes sense to exclude an assembly when you have a scenario such as the following:

Assembly A should be Dotfuscated.
Assembly B should not be Dotfuscated.
Assembly B depends on assembly A.

In other words, A provides services to B and no one else. You want the references to A embedded inside B to be
Dotfuscated, so you include B in the same run as A, but you exclude B from renaming or control flow obfuscation.

Excluding Assemblies

<assembly>
 <file dir="c:\projects\project1\" name="ExcludedLib.dll"/>
</assembly>

2.6.3.22.1.10 Excluding Modules
Modules may be excluded by name. Use the assembly attribute to qualify the module to a particular assembly. When
specified, the assembly name should be the logical assembly name rather than its physical file name. When a module is
excluded, all its defined types and members are excluded.

Obviously, if a given module is shared among multiple assemblies, then the module will be excluded from all the
assemblies.

Module Excluded from all Assemblies:

<module name="MyLibResource.dll" assemblyname="MyLib"/>

2.6.3.22.2 Inclusion Rules
The include list section provides a dynamic way to fine tune the string encryption and pruning of the input assemblies.
The user specifies a list of rules that are applied at runtime. If a rule selects a given class, method, field, property, or event
then that item is included for string encryption or pruning.

These rules are applied in addition to rules implied by global options such as library.

Rules are logically OR-ed together.

Dotfuscator User's Guide 219

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Regular Expressions (REs) may be used to select namespaces, types, methods, fields, properties, or events. The optional
regex attribute is used for this purpose. The default value of regex is false. If regex is true then the value of the name
attribute is interpreted as a regular expression; if it is false, the name is interpreted literally. This is important since regular
expressions assign special meaning to certain characters, such as the period.

Here are some examples of simple regular expressions:

Regular Expressions:

.* Matches anything
MyLibrar. Matches MyLibrary, MyLibrari, etc.
My[\.]Test[\.]I.* Matches My.Test.Int1,My.Test.Internal, etc.
Get.* Matches GetInt, GetValue, etc.
Get* Matches Ge,Get,Gett,Gettt, etc.

Please refer to the .NET Framework documentation for a full description of the regular expression syntax.

2.6.3.22.2.1 Including Namespaces
This option includes all types and their methods in a given namespace. You can use a regular expression to specify the
namespace.

Regular Expression:

<namespace name="My.Included.Namespace"/>

2.6.3.22.2.2 Including Types
This option includes a type by name or by attribute specifier. You can use a regular expression to specify the type name.

Type names should be fully qualified names.

Inner (nested) classes are specified by using the ‘/’ as a delimiter between outer and inner class. For example:

Inner (Nested) Classes

<type name="Library.Class1/NestedClass"/>

Attribute specifiers are selected or deselected with the speclist attribute. The speclist attribute is a comma-
separated list of legal attribute specifiers for types. The legal values are:

Attribute Specifiers:

Dotfuscator User's Guide 220

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

abstract
interface
nestedassembly
nestedfamily
nestedfamorassem
nestedprivate
nestedpublic
notpublic
public
sealed
serializable
enum

A ‘-‘ preceding an attribute specifier negates the rule (i.e. it includes all classes that do not have the specified attribute). A
‘+’ may be specified but is not required. The rules implied in this list are logically AND-ed together (that is, the set of
included types is the intersection of all types that match each rule.). For instance, the following rule includes all methods
within any type that is public AND sealed.

Include Method with Public and Sealed Types:

<type name=”.*” speclist=”+public,+sealed” regex=”true”/>

The <type> element may also be used to select a type in order to specify rules for individual method inclusion within it.
This allows string encryption in some methods of a type, while not in others. Note the <type> element’s excludetype
attribute is not used in the context of string encryption inclusions.

Allow String Encryption in Some Methods of Type:

<type name="MyCo.Test.MyOtherTest">
<!-- individual methods included here -->
...
</type>

If a <type> element contains no nested <method> elements, then all methods are selected for inclusion. This is in
contrast to an exclusion rule.

Applies only to Pruning:

Type rules can be applied to entire inheritance hierarchies by specifying the applytoderivedtypes attribute. Setting
the value of this attribute to true will apply the type rule and any Method, Field, Property, Event, Custom Attribute, or
Supertype rules that it contains to the selected type and all types that derive from it. If not specified, the default value is
false, meaning that the type rule will only be applied to the specified type.

2.6.3.22.2.3 Including Methods

Dotfuscator User's Guide 221

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Methods may be included by first selecting the type using the <type> element, then providing a rule for selecting
methods to include. Methods may be included by name and attribute specifier (as explained in the type section above), as
well as by signature. Allowed attribute specifiers are:

Allowed attribute specifiers are:

abstract
assembly
family
familyorassembly
final
private
public
static
virtual

If the attribute specifier is not set explicitly, then the speclist attribute is not used as a matching criterion.

The following example selects all public instance methods beginning with Set:

All Public Instance Methods Beginning with Set:

<method regex="true" name="Set.*" speclist="+public,-static"/>

Method signatures are specified using the signature attribute. A signature specifies both the return type and the
parameter types of the method:

Return Type and Parameter Types of the Method:

signature="" <!-- empty parameter list -->

signature="string(int,MyClass,MyClass[])"

If the signature is not set explicitly, then the method signature is not used as a matching criterion.

The following example selects a method by signature:

Select Method by Signature:

<method name="DoIt" signature="string(int, System.Console,
System.Collection.ICollection, float[])"/>

Global methods may be specified by using a special type selector with the name Module:mod_name where mod_name is
the name of the module containing the global method.

2.6.3.22.2.4 Including Fields

Dotfuscator User's Guide 222

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Field inclusion is only valid for pruning triggers and pruning conditional includes.

Fields may be selected by first selecting the type using the <type> element, then providing a rule for selecting fields.
Fields may be selected by name and attribute specifier (as explained in the type section above). Allowed attribute
specifiers are:

Allowed attribute specifiers are:

public
private
static
assembly
family
familyandassembly
familyorassembly
notserialized

If the attribute specifier is not set explicitly, then field attribute will not be used at all as a matching criterion.

The following example selects all static fields starting with "ENUM_":

Static Fields Starting with "ENUM_":

<field regex="true" name="ENUM_.*" speclist="+static"/>

Global fields may be specified by using a special type selector with the name Module:mod_name where mod_name is the
name of the module containing the global field.

2.6.3.22.2.5 Including Properties
Property inclusion is valid for Pruning only. Property rules are qualified by type rules, so they appear in the rules view as
children of type nodes. A property rule will select all properties (in all types matched by the parent type rule) that match
your criteria. Supported matching criteria include property name and property attributes. Allowed attribute specifiers are:

Allowed attribute specifiers are:

public
private
static
assembly
family
familyandassembly
familyorassembly

If the attribute specifier is not set explicitly, then the property attribute will not be used as a matching criterion.

The following example selects all properties starting with "Sample ":

Dotfuscator User's Guide 223

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Properties Starting with "Sample":

<property regex="true" name="Sample.*"/>

Property signatures are specified using the signature attribute. A signature specifies the type of the property:

Signature Specifies the Type of Property:

signature="" <!-- empty signature -->

signature="int"

If the signature is not set explicitly, then the property type will not be used as a matching criterion.

Global properties may be specified by using a special type selector with the name Module:mod_name where mod_name
is the name of the module containing the global property.

2.6.3.22.2.6 Including Events
Event inclusion is valid for Pruning only. Event rules are qualified by type rules, so they appear in the rules view as children
of type nodes. An event rule will select all events (in all types matched by the parent type rule) that match your criteria.
Supported matching criteria include event name and event attributes. Allowed attribute specifiers are:

Allowed attribute specifiers are:

public
private
static
assembly
family
familyandassembly
familyorassembly

If the attribute specifier is not set explicitly, then the event attribute will not be used as a matching criterion.

The following example selects all events starting with "On":

Events Starting with "On":

<event regex="true" name="On.*"/>

Global events may be specified by using a special type selector with the name Module:mod_name where mod_name is
the name of the module containing the global event.

Dotfuscator User's Guide 224

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.6.3.22.2.7 Including By Custom Attribute
Types and methods may be selectively included by custom attribute. A custom attribute rule selects an item (type or
method) based on matching against the names of custom attributes that annotate the item. One or more custom attribute
rules may be nested inside any rule that selects types or methods.

A type or method rule may have multiple custom attribute rules associated with it. In this case, an item is selected if at
least one of the custom attribute rules selects it.

The following example selects all types that are annotated with either MyCustomAttribute or
MyOtherCustomAttribute:

Types Annotated with MyCustomAttribute or MyOtherCustomAttribute:

<type name=".*" excludetype="false" regex="true>
 <customattribute name="MyCustomAttribute"/>
...<customattribute name="MyOtherCustomAttribute"/>
</type>

Custom attribute rules can also be written using regular expressions to match custom attribute names. The following
example is another way to select all types annotated with either MyCustomAttribute or MyOtherCustomAttribute:

Selecting Types Annotated with MyCustomAttribute or MyOtherCustomAttribute:

<type name=".*" excludetype="false" regex="true>
 <customattribute name="My.*CustomAttribute" regex="true"/>
</type>

The next example shows how to include all methods annotated with a custom attribute named MyCustomAttribute:

Including Methods Annotated with MyCustomAttribute:

<type name=".*" excludetype="false" regex="true">
 <method name=".*" regex="true">
 <customattribute name="MyCustomAttribute"/>
 </method>
</type>

Custom attribute rules can be applied to subtypes or overriding methods and properties by specifying the
allowinheritance attribute. When the value of this attribute is set to true then subtypes or overriding methods and
properties with the specified custom attribute will also be excluded.

2.6.3.22.2.8 Including By Supertype
Types may be selectively included by supertype. A supertype rule selects a type based on matching against the names of
types that the given type inherits from. One or more supertype rules may be nested inside any rule that selects types.

Dotfuscator User's Guide 225

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

A type rule may have multiple supertype rules associated with it. In this case, an item is selected if at least one of the
supertype rules selects it.

The following example selects all types that inherit from MySupertype:

Selecting Types that Inherit from MySuperType:

<type name=".*" excludetype="false" regex="true">
 <supertype name="MySupertype"/>
</type>

Supertype rules can also be written using regular expressions to match supertype names. The following example shows
how to select all types that inherit from either MySupertype or MyOtherSupertype:

Select Types that Inherit from MySupertype or MyOtherSupertype:

<type name=".*" excludetype="false" regex="true">
 <supertype name="My.*Supertype" regex="true"/>
</type>

2.6.3.22.2.9 Including Assemblies
Assemblies may be included by name. When an assembly is included, all types and methods within any of the assembly’s
modules are included.

Including Assemblies

<assembly>
 <file dir="c:\projects\project1\" name="IncludedLib.dll"/>
</assembly>

2.6.3.22.2.10 Including Modules
Modules may be included by name. Use the assembly attribute to qualify the module to a particular assembly. When
specified, the assembly name should be the logical assembly name rather than its physical file name. When a module is
included, all its defined types and members are included.

Obviously, if a given module is shared among multiple assemblies, then the module will be included for all the assemblies.

Including Modules

<module name="MyLibResource.dll" assemblyname="MyLib"/>

2.6.3.23 dotfuscator_v2.3.dtd

Dotfuscator User's Guide 226

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The dotfuscator_v2.3.dtd DTD describes the format of the configuration file produced by Dotfuscator. A copy is available
at www.preemptive.com/dotfuscatorresources/dtd/dotfuscator_v2.3.dtd.

2.6.4 Custom Attribute Reference
This section contains reference documentation of the custom attributes and public classes used for instrumentation. These
classes are defined in PreEmptive.Attributes.dll, installed by default into the Dotfuscator installation folder.

2.6.4.1 PreEmptive.Attributes
Classes

ApplicationAttribute

BinaryAttribute

BusinessAttribute

ExceptionTrackAttribute

FeatureAttribute

InsertShelfLifeAttribute

InsertSignOfLifeAttribute

InsertTamperCheckAttribute

PerformanceProbeAttribute

SetupAttribute

SystemProfileAttribute

TeardownAttribute

Enumerations

ExceptionTypes

FeatureEventTypes

InjectionPoints

SinkElements

SourceElements

Dotfuscator User's Guide 227

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

http://www.preemptive.com/dotfuscatorresources/dtd/dotfuscator_v2.3.dtd

2.6.4.1.1 ApplicationAttribute
Summary

An instrumentation time custom attribute for assemblies. Dotfuscator translates this attribute into an attribute that is
consumable by PreEmptive Analytics code. Values specified in this attribute will be sent in PreEmptive Analytics messages
to identify the application. This includes messages for Tamper Notification and Application Analytics.

ApplicationAttribute

public class ApplicationAttribute : Attribute

Constructor Members

Name Summary

ApplicationAttribute(String
guid)

Creates an ApplicationAttribute with a unique Id. The PreEmptive
Analytics code will find the name and version by reflecting on the
Assembly itself.

ApplicationAttribute(String
guid, String name, String
version)

Creates an ApplicationAttribute with a unique Id, name, and
version.

ApplicationAttribute(String
guid, String name, String
version, String applicationType)

Creates an ApplicationAttribute with a unique Id, name, and
version, and application type.

Property Members

Name Summary

ApplicationType : String Gets the application type. A null value is allowed.

Guid : String Gets the application's unique Id as a string in GUID format.

Name : String Gets the application name. A null value is allowed.

Version : String Gets the application version. A null value is allowed.

2.6.4.1.2 BinaryAttribute
Summary

An instrumentation time custom attribute for assemblies. Dotfuscator translates this attribute into an attribute that is
consumable by the PreEmptive Analytics code. Values specified in this attribute will be sent in PreEmptive
Analytics messages to identify specific binaries (assemblies) that make up an application.

Dotfuscator User's Guide 228

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

BinaryAttribute

public class BinaryAttribute : Attribute

Constructor Members

Name Summary

BinaryAttribute(String guid) Creates a BinaryAttribute with a unique Id.

Property Members

Name Summary

Guid : String Gets the binary's unique Id as a string in GUID format.

2.6.4.1.3 BusinessAttribute
Summary

An instrumentation time custom attribute for assemblies. Dotfuscator translates this attribute into an attribute that is
consumable by the PreEmptive Analytics code. Values specified in this attribute will be sent in PreEmptive
Analytics messages to identify business information.

Business Attribute

public class BusinessAttribute : Attribute

Constructor Members

Name Summary

BusinessAttribute(String
companyKey)

Creates a BusinessAttribute with a given CompanyKey.

BusinessAttribute (String
companyKey, String
companyName)

Creates a BusinessAttribute with a given CompanyKey and
CompanyName

Property Members

Name Summary

CompanyKey : String Gets the company key. The company key is a token provided to
each company upon registration with the service. The key may not
be null or empty.

CompanyName : String Gets the company name. A null value is allowed.

Dotfuscator User's Guide 229

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.6.4.1.4 ExceptionTrackAttribute
Summary

The ExceptionTrackAttribute is an instrumentation time attribute for both assemblies and methods. Dotfuscator will insert
exception tracking code into any assembly or method with this attribute. At runtime, the exception tracking code can
detect caught, thrown, or unhandled exceptions. Multiple ExceptionTrackAttributes may be defined on an assembly or
method to combine these detections. Once detected, the exception tracking code can collect details from the user and
report the detected exception to a PreEmptive Analytics endpoint. A user can explicitly allow an exception report to be
sent even if he or she has previously opted out of sending PreEmptive Analytics messages, and can provide comment and
contact information to be sent along with the report. In addition, the developer can specify a custom action be taken
when an exception is detected. In order to send Exception Tracking report messages, your application must contain
methods marked with a Setup and Teardown attribute. Do not put the ExceptionTrackAttribute on the same method
containing the Setup Attribute. Methods with this attribute must be executed after the method containing the Setup
Attribute.

Exception Notification

A SinkElement may be used to specify a method to call, or a property or field to set in the application when an
exception is detected. Unlike other SinkElement types which are always called when a check is performed, the
ExceptionNotificationSinkElement is only called when an exception of the configured type is detected within the
attributed assembly or method.

If the SinkElement is a property, the property's type must be Exception and its value will be set to the exception that
was detected when detection occurs. If using method-level exception tracking, the property should be writable and
accessible from the attributed method. If the property is not static, it must be defined in the same class as the attributed
method, and the attributed method must not be static. If using assembly-level exception tracking, the property must be
public, static, and writable. The name of the property must be specified in ExceptionNotificationSinkName. The
type defining the property should be specified in ExceptionNotificationSinkOwner. If using method-level
exception tracking, this can be left unset; in that case, Dotfuscator will look for the property on the type defining the
attributed method. ExceptionNotificationSinkOwner must be set when using assembly-level exception tracking.

If the SinkElement is a field, the field's type must be Exception and its value will be set to the exception that was
detected when detection occurs. If using method-level exception tracking, the field should be accessible from the
attributed method. If the field is not static, it must be defined on the same class as the attributed method, and the
attributed method must not be static. If using assembly-level exception tracking, the field must be public and static. The
name of the field must be specified in ExceptionNotificationSinkName. The type defining the field should be
specified in ExceptionNotificationSinkOwner. If using method-level exception tracking, this can be left unset; in
that case, Dotfuscator will look for the field on the type defining the attributed method.
ExceptionNotificationSinkOwner must be set when using assembly-level exception tracking.

Dotfuscator User's Guide 230

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

If the SinkElement is a method, the method will be called with a single parameter of type Exception when detection
occurs. If using method-level exception tracking, the target method should be accessible from the attributed method. If
the target method is not static, it must be defined in the same class as the attributed method, and the attributed method
must not be static. If using assembly-level exception tracking, the method must be public and static. The name of the
target method must be specified in ExceptionNotificationSinkName. The type defining the target method should
be specified in ExceptionNotificationSinkOwner. If using method-level exception tracking, this can be left unset; in
that case, Dotfuscator will look for the target method on the type defining the attributed method.
ExceptionNotificationSinkOwner must be set when using assembly-level exception tracking.

If the SinkElement is a method argument, the named argument should be a Delegate type and the Delegate must have
this signature: void(System.Exception). The Delegate will be invoked with the Exception argument set to the
value of the detected exception when detection occurs. The name of the method argument must be specified in
ExceptionNotificationSinkName. ExceptionNotificationSinkOwner is unused.

If the SinkElement is a Delegate, it should be a field of Delegate type. The Delegate will be invoked with the argument
of type Exception set to the exception that was detected when detection occurs. If using method-level exception
tracking, the field should be accessible from the attributed method. If the field is not static, it must be defined on the
same class as the attributed method, and the attributed method must not be static. If using assembly-level exception
tracking, the field must be public and static. The name of the field must be specified in
ExceptionNotificationSinkName. ExceptionNotificationSinkOwner is unused.

If the ExceptionNotificationSinkElement is set to DefaultAction or None, Dotfuscator will not inject any code to
react to the detected exception. Dotfuscator will still generate code to send the appropriate message to a PreEmptive
Analytics Endpoing if configured to do so via the SendReport attribute property.

Dotfuscator will remove this custom attribute from the metadata after instrumentation.

ExceptionTrackAttribute

public class ExceptionTrackAttribute : Attribute

Constructor Members

Name Summary

ExceptionTrackAttribute() Initializes a new instance of the class.

Dotfuscator User's Guide 231

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Property Members

Dotfuscator User's Guide 232

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Property Members

Name Summary

ExceptionNotificationSinkElement :
SinkElements

Indicates whether and how to take action upon detection of
an exception of the configured ExceptionType. A sink
element may be a writable field or settable property of type
Exception, a void(System.Exception) method to call, or a
Delegate to invoke. To use this property,
ExceptionNotificationSinkName must also be set. If
using method-level exception tracking and
ExceptionNotificationSinkElement is a field, method, or
property, ExceptionNotificationSinkOwner must also be
set unless the field, method or property is defined on the
same class as the attributed method. If using assembly-
level exception tracking,
ExceptionNotificationSinkOwner must always also be
set. If the SinkElement is set to “None” or “DefaultAction”,
Dotfuscator will not inject any code to react to the detected
exception. If the SendReport property is set to true, code
to send an exception report will still be injected regardless
of whether this property has been set to “None” or
“DefaultAction”.

ExceptionNotificationSinkName :
String

The name of the property, field, method to set or call when
an exception of the configured type is detected. If using
assembly-level exception tracking, this property, field, or
method must be public, static, and writable. If this property
is set, ExpirationNotificationSinkElement is required to
be set as well. If this property is not set, Dotfuscator will
not inject any code to react to the detected exception. If the
SendReport property is set to true, code to send an
exception report will still be injected regardless of whether
this property is set.

ExceptionNotificationSinkOwner :
Type

If the ExceptionNotificationSinkElement is a field,
method or property, ExceptionNotificationSinkOwner
indicates the name of the type that defines the field,
method or property. If not set, the named source element is
searched for on the attributed method’s type.
ExceptionNotificationSinkOwner must be set for
assembly-level exception tracking.

ExceptionType : ExceptionTypes The type of exceptions to track with this
ExceptionTrackAttribute (caught, thrown, or unhandled).
The default is Unhandled.

Dotfuscator User's Guide 233

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

ExtendedKeyMethodArguements :
string

A pattern indicating which parameter names and values
should be automatically added to the messages extended
key data at runtime. See Automatically Sending Method
Parameters as Extended Keys for details on supported
patterns.

ExtendedKeySourceElement :
SourceElements

Indicates how to access the extended key dictionary at
runtime, at the time that the attributed method is called
(e.g. a field, property, method, or method parameter). To
use this property, ExtendedKeySourceName must also be
set. If using method-level exception tracking and
ExtendedKeySourceElement is a field, method, or property,
ExtendedKeySourceOwner must also be set unless the field,
method or property is defined on the same class as the
attributed method. If using assembly-level exception
tracking, ExtendedKeySourceOwner must always also be
set.

ExtendedKeySourceName : string The name of the property, field, method, or method
parameter that will contain the extended key dictionary at
runtime, at the time that the attributed method is called. If
using assembly-level exception tracking, this property, field,
or method must be public, static, and writable. If this
property is set, ExtendedKeySourceElement is required to
be set as well. If this property is not set, Dotfuscator will
not generate code to send extended key information.

ExtendedKeySourceOwner : Type If the ExtendedKeySourceElement is a field, method or
property, ExtendedKeySourceOwner indicates the name of
the type that defines the field, method or property. If not
set, the named source element is searched for on the
attributed method’s type. ExtendedKeySourceOwner must
be set for assembly-level exception tracking.

PrivacyPolicyUri : string URL to a privacy policy covering the transmission of
exception reports. This property is only used if the
ReportInfoSourceElement is set to DefaultAction. In this
case, a link to the PrivacyPolicyUri is included on the built-in
exception report dialog. If this property is not set, the
exception report dialog will not contain a privacy policy link.

ReportInfoSourceElement :
SourceElements

Indicates how to access the user-specified report
information dictionary at runtime, at the time an exception
is detected. The default value is None. If this property is set
to None, Dotfuscator will not generate code that obtains
user-specified exception report information. If this property
is set to DefaultAction, Dotfuscator will generate code that
displays a built-in dialog that shows the exception message

Dotfuscator User's Guide 234

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

and prompts the user for his or her address, comments,
and consent to send the report. If this property is set to any
other value, ReportInfoSourceName must also be set. If
using method-level exception tracking and
ReportInfoSourceElement is a field, method, or property,
ReportInfoSourceOwner must also be set unless the field,
method or property is defined on the same class as the
attributed method. If using assembly-level exception
tracking, ReportInfoSourceOwner must always also be set.
See Collecting User-specified Exception Report Information
for a description of the key-value pairs recognized in the
user-specified report information dictionary.

ReportInfoSourceName : string The name of the property, field, method, or method
parameter that will contain the user-specified report
information dictionary at runtime, at the time that the
attributed method is called. If using assembly-level
exception tracking, this property, field, or method must be
public, static, and writable. If this property is set,
ReportInfoSourceElement is required to be set as well. If
this property is not set, Dotfuscator will not generate code
that obtains user-specified exception report information.

ReportInfoSourceOwner : Type If the ReportInfoSourceElement is a field, method or
property, ReportInfoSourceOwner indicates the name of
the type that defines the field, method or property. If not
set, the named source element is searched for on the
attributed method’s type. ReportInfoSourceOwner must be
set for assembly-level exception tracking.

SendReport : bool Whether or not to send an exception report when an
exception is tracked. The default value is true. If this
property is set to false, the ReportInfoSource properties
will be ignored. A custom action (via the
ExceptionNotifiationSink properties) will always be taken if
one has been configured, regardless of the value of this
property.

2.6.4.1.4.1 ExceptionTypes
Summary

Types of exceptions to track.

Exception Types

Dotfuscator User's Guide 235

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

public enum ExceptionTypes

Enumeration Members

Field Summary

Unhandled Track unhandled exceptions.

Caught Track exceptions right after they enter a 'catch' block.

Thrown Track exceptions right before being thrown by a 'throw' statement.

2.6.4.1.5 FeatureAttribute
Summary

A FeatureAttribute is an instrumentation time custom attribute for Application Analytics processing. Dotfuscator will
insert code into the attributed method that sends PreEmptive Analytics feature messages.

Dotfuscator will remove this custom attribute from the metadata after instrumentation.

Feature Event Types

Features can be defined as one time only events (Ticks), or they can be defined with separate Stop and Start events. The
event type you choose affects the type of code Dotfuscator generates.

The Tick event results in one PreEmptive Analytics feature message being sent when the attributed method executes. For
Start/Stop events, two separate messages are sent: one for start and one for stop.

To use Start/Stop events, two FeatureAttributes are required (which can go on the same method if desired). Code
generated for the Start event is added at the beginning of the attributed method, while code for the Stop event is added
to the end of the method.

Feature Attribute

public class FeatureAttribute : Attribute

Constructor Members

Name Summary

FeatureAttribute(String
featureName)

Creates a new FeatureAttribute representing the named feature.
The name of the feature should match the name of a feature or
feature set specified for the product.

Dotfuscator User's Guide 236

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Property Members

Dotfuscator User's Guide 237

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Property Members

Name Summary

ExtendedKeyMethodArguements :

string

A pattern indicating which parameter names and values should be

automatically added to the messages' extended key data at runtime. See

Automatically Sending Method Parameters as Extended Keys for details on

supported patterns.

ExtendedKeySourceElement :

SourceElements

Indicates how to access the extended key dictionary at runtime, at the time

that the attributed method is called (e.g. a field, property, method, or method

parameter). To use this property, ExtendedKeySourceName must also be set. If

ExtendedKeySourceElement is a field, method, or property,

ExtendedKeySourceOwner must also be set unless the field, method or property

is defined on the same class as the attributed method.

Dotfuscator User's Guide 238

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

ExtendedKeySourceName : string The name of the property, field, method, or method parameter that will

contain the extended key dictionary at runtime, at the time that the attributed

method is called. If this property is set, ExtendedKeySourceElement is required

to be set as well. If this property is not set, Dotfuscator will not generate code

to send extended key information.

ExtendedKeySourceOwner : Type If the ExtendedKeySourceElement is a field, method or property,

ExtendedKeySourceOwner indicates the name of the type that defines the field,

method or property. If not set, the named source element is searched for on

the attributed method’s type.

EventType : FeatureEventTypes Describes what type of feature event this is. For analytics, Dotfuscator will

send different messages based on the event type. Bracketing feature usage

with Start and Stop pairs allows for tracking of time spent in the feature.

Dotfuscator User's Guide 239

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.6.4.1.5.1 FeatureEventTypes
Summary

Possible feature event types for the FeatureAttribute.

FeatureEventTypes

public enum FeatureEventTypes : Attribute

Enumeration Members

Field Summary

Tick This FeatureAttribute marks a method that represents a feature use as an instant in time.

Start This FeatureAttribute marks a method that represents the beginning of a Feature.

Stop This FeatureAttribute marks a method that represents the end of a Feature.

2.6.4.1.6 InsertShelfLifeAttribute
Summary

The InsertShelfLifeAttribute is an instrumentation time attribute for methods. Dotfuscator will insert shelf life code into any
method with this attribute. At runtime, the shelf life code can send a warning or expiration message if the application has
expired or is about to expire. If the warning period is entered, then a user defined action can be executed. Upon
expiration, the default behavior is to exit the application, though a user-defined action can be executed instead. In order
to use Shelf Life your application must contain methods marked with a Setup and Teardown attribute. Do not put the
InsertShelfLife attribute on the same method containing the Setup Attribute. Methods with this attribute must be
executed after the method containing the Setup Attribute.

Application Notification

A SinkElement may be used to specify a method to call, or a property or field to set in the application when a warning
or expiration event occurs.

Dotfuscator User's Guide 240

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

If the SinkElement is a property, the property will be set to true if the warning period is entered or the application is
expired; false if not. The property should be writable, accessible from the attributed method, and of boolean type. If the
property is not static, it must be defined in the same class as the attributed method, and the attributed method must not
be static. The name of the property must be specified in ExpirationNotificationSinkName or
WarningNotificationSinkName. The generated code will make no attempt to catch or handle exceptions thrown
from the property setter. The type defining the property should be specified in ExpirationNotificationSinkOwner
or WarningNotificationSinkOwner; if either is left unset, Dotfuscator will look for the property on the type defining
the attributed method.

If the SinkElement is a field, the field will be set to true if warning or expiration occurs; false if not. The field should be
accessible from the attributed method, and of boolean type. If the field is not static, it must be defined on the same class
as the attributed method, and the attributed method must not be static. The name of the field must be specified in
ExpirationNotificationSinkName or WarningNotificationSinkName . The type defining the field should be
specified in ExpirationNotificationSinkOwner or WarningNotificationSinkOwner; if either is left unset,
Dotfuscator will look for the field on the type defining the attributed method.

If the SinkElement is a method, the method will be called with a single Boolean parameter set to true if the warning
period is entered or the application is expired; false if not. The target method should be accessible from the attributed
method, and must take one parameter of boolean type. If the target method is not static, it must be defined in the same
class as the attributed method, and the attributed method must not be static. The name of the target method must be
specified in ExpirationNotificationSinkName or WarningNotificationSinkName. The generated code will
make no attempt to catch or handle exceptions thrown from the target method. The type defining the target method
should be specified in ExpirationNotificationSinkOwner or WarningNotificationSinkOwner; if either is left
unset, Dotfuscator will look for the target method on the type defining the attributed method.

If the SinkElement is a method argument, the named argument should be a Delegate type and the Delegate must have
this signature: void(bool). The Delegate will be invoked with the boolean argument set to true if the warning period
is entered or the application is expired; false if not. The generated code will make no attempt to catch or handle
exceptions thrown from the invoked Delegate. The name of the method argument must be specified in
ApplicationNotificationSinkName. ApplicationNotificationSinkOwner is unused.

If the SinkElement is a Delegate, it should be a field of Delegate type. The Delegate will be invoked with the boolean
argument set to true if the warning period is entered or the application is expired; false if not. If the field is not static, it
must be defined on the same class as the attributed method, and the attributed method must not be static. The name of
the field must be specified in ExpirationNotificationSinkName or WarningNotificationSinkName. In this
case, the ExpirationNotificationSinkOwner or WarningNotificationSinkOwner are unused. The Delegate
must have this signature: void(bool). The generated code will make no attempt to catch or handle exceptions
thrown from the invoked Delegate.

If the ExpirationNotificationSinkElement is set to DefaultAction, Dotfuscator will inject code that exits the
application if it is expired. If the WarningNotificationSinkElement is set to DefaultAction, Dotfuscator will not
inject any warning specific code.

Dotfuscator User's Guide 241

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

If the SinkElement is set to None, Dotfuscator will not inject any code to react if the warning period is entered or the
application is expired. Dotfuscator will still generate code to send the appropriate message to a PreEmptive Analytics
Endpoint if configured to do so from the Global Options tab.

Dotfuscator will remove this custom attribute from the metadata after instrumentation.

InsertShelfLifeAttribute

public class InsertShelfLifeAttribute : Attribute

Constructor Members

Name Summary

InsertShelfLifeAttribute() Initializes a new instance of the class.

Dotfuscator User's Guide 242

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Property Members

Dotfuscator User's Guide 243

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Property Members

Name Summary

ActivationKeyFile The path to the Shelf Life Activation Key file.

ExpirationDate Indicates the date the application will expire and/or
deactivate. This can be an absolute date

(e.g., 2009-12-31) or a positive integer representing
number of days after the Dotfuscation date that the
application should expire.

ExpirationNotificationSinkElement :
SinkElements

Indicates whether and how to notify the application after
shelf life expiration, at the time that the attributed method
is called. A sink element may be a writable boolean field,
settable boolean property, a void(boolean) method to call,
or a Delegate to invoke. To use this property,
ExpirationNotificationSinkName must also be set. If
ExpirationNotificationSinkElement is a field, property,
or method, the ExpirationNotificationSinkOwner should
also be set if it is not in the same class as the attributed
method. If the SinkElement is set to “DefaultAction”,
Dotfuscator will inject code that exits the application if shelf
life expiration is detected.

ExpirationNotificationSinkName :
String

The name of the property, field, method to set or call after
a shelf life expiration check. If this property is set,
ExpirationNotificationSinkElement is required to be set
as well. If this property is not set, Dotfuscator will not
generate code that notifies the application of expiration.

ExpirationNotificationSinkOwner :
Type

ExpirationNotificationSinkOwner indicates the name of
the type that defines the ExpirationNotificationSink
method, field, property, argument, or delegate. If not set,
the named sink element is searched for on the attributed
method’s type.

ExtendedKeyMethodArguements :
string

A pattern indicating which parameter names and values
should be automatically added to the messages extended
key data at runtime. See Automatically Sending Method
Parameters as Extended Keys for details on supported
patterns.

ExtendedKeySourceElement :
SourceElements

Indicates how to access the extended key dictionary at
runtime, at the time that the attributed method is called
(e.g. a field, property, method, or method parameter). To
use this property, ExtendedKeySourceName must also be

Dotfuscator User's Guide 244

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

set. If ExtendedKeySourceElement is a field, method, or
property, ExtendedKeySourceOwner must also be set unless
the field, method or property is defined on the same class
as the attributed method.

ExtendedKeySourceName : string The name of the property, field, method, or method
parameter that will contain the extended key dictionary at
runtime, at the time that the attributed method is called. If
this property is set, ExtendedKeySourceElement is required
to be set as well. If this property is not set, Dotfuscator will
not generate code to send extended key information.

ExtendedKeySourceOwner : Type If the ExtendedKeySourceElement is a field, method or
property, ExtendedKeySourceOwner indicates the name of
the type that defines the field, method or property. If not
set, the named source element is searched for on the
attributed method’s type.

PrivateKeyFile The path to a PKCS #12 Private Key file that is optionally
used to provide additional validation of a Shelf Life token.

PrivateKeyFilePassword The password protecting the Private Key file.

ShelfLifeTokenSourceElement ShelfLifeTokenSourceElement indicates how to access the
optional shelf life token source at runtime, at the time that
the attributed method is called (e.g. a field, property,
method, or method parameter). To use this property,
ShelfLifeTokenSourceName must also be set. If
ShelfLifeTokenSourceElement is a field, method, or
property, ShelfLifeTokenSourceOwner must also be set
unless the field, method or property is defined on the same
class as the attributed method.

ShelfLifeTokenSourceName The name of the property, field, method, or method
parameter that will contain the shelf life token at runtime,
at the time that the attributed method is called. If this
property is set, ShelfLifeTokenSourceElement is required
to be set as well. If this property is not set, Dotfuscator will
create a shelf life token from the shelf life activation key
during instrumentation.

ShelfLifeTokenSourceOwner If the ShelfLifeTokenSourceElement is a field, method or
property, ShelfLifeTokenSourceOwner indicates the name
of the type that defines the field, method or property. If not
set, the named source element is searched for on the
attributed method’s type.

WarningDate Indicates the date a warning of impending application
expiration will occur. This can be an absolute date

Dotfuscator User's Guide 245

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

(e.g., 2009-12-31) or a positive integer representing
number of days after the Dotfuscation date that the
application should issue a warning.

WarningNotificationSinkElement Indicates whether and how to notify the application of
impending shelf life expiration, at the time that the
attributed method is called. A sink element may be a
writable boolean field, settable boolean property, a void(
boolean) method to call, or a Delegate to invoke. To use
this property, WarningNotificationSinkName must also be
set. If ApplicationNotificationSinkElement is a field,
property, or method, the WarningNotificationSinkOwner
should also be set if it is not in the same class as the
attributed method. If the SinkElement is set to
“DefaultAction”, Dotfuscator will not inject code to perform
any additional warning behavior.

WarningNotificationSinkName The name of the property, field, method to set or call after
a shelf life warning check. If this property is set,
WarningNotificationSinkElement is required to be set as
well. If this property is not set, Dotfuscator will not inject
code to perform any additional warning behavior.

WarningNotificationSinkOwner WarningNotificationSinkOwner indicates the name of the
type that defines the WarningNotificationSink method,
field, property, argument, or delegate. If not set, the
named sink element is searched for on the attributed
method’s type.

2.6.4.1.7 InsertSignofLifeAttribute
Summary

The InsertSignOfLifeAttribute sends a message each time a method instrumented with this attribute is called. At runtime,
the sign of life code will send a message indicating that the application has been executed. In order to use Sign Of Life
your application must contain methods marked with a Setup and Teardown attribute. Do not put the InsertSignOfLife
attribute on the same method containing the Setup Attribute. Methods with this attribute must be executed after the
method containing the Setup Attribute.

Dotfuscator will remove this custom attribute from the metadata after instrumentation.

InsertSignofLifeAttribute

public class InsertShelfLifeAttribute : Attribute

Dotfuscator User's Guide 246

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Constructor Members

Name Summary

InsertSignOfLifeAttribute() Initializes a new instance of the class.

Property Members

Name Summary

ActivationKeyFile The path to the Shelf Life Activation Key file.

ExtendedKeyMethodArguements :
string

A pattern indicating which parameter names and values
should be automatically added to the messages extended
key data at runtime. See Automatically Sending Method
Parameters as Extended Keys for details on supported
patterns.

ExtendedKeySourceElement :
SourceElements

Indicates how to access the extended key dictionary at
runtime, at the time that the attributed method is called
(e.g. a field, property, method, or method parameter). To
use this property, ExtendedKeySourceName must also be
set. If ExtendedKeySourceElement is a field, method, or
property, ExtendedKeySourceOwner must also be set unless
the field, method or property is defined on the same class
as the attributed method.

ExtendedKeySourceName : string The name of the property, field, method, or method
parameter that will contain the extended key dictionary at
runtime, at the time that the attributed method is called. If
this property is set, ExtendedKeySourceElement is required
to be set as well. If this property is not set, Dotfuscator will
not generate code to send extended key information.

ExtendedKeySourceOwner : Type If the ExtendedKeySourceElement is a field, method or
property, ExtendedKeySourceOwner indicates the name of
the type that defines the field, method or property. If not
set, the named source element is searched for on the
attributed method’s type.

2.6.4.1.8 InsertTamperCheckAttribute

Dotfuscator User's Guide 247

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Summary

The InsertTamperCheckAttribut is an instrumentation time attribute for methods. Dotfuscator will insert tamper checking
code into any method with this attribute. At runtime, the tamper checking code can send a PreEmptive Analytics tamper
message if the application integrity checks fail. It can also invoke custom code in your application or invoke code that
simply exits the application. If you wish to send PreEmptive Analytics tamper messages, do not put this attribute on the
same method containing the Setup Attribute. Methods with this attribute must be executed after the method containing
the Setup Attribute.

Application Notification

A SinkElement may be used to specify a method to call or a property or field to set in the application after the tamper
check is performed. This allows the application to specify what should occur inside the application when tampering is or
isn't detected. The specified field or property will be set (or the method or delegate will be invoked) all the time-- even if a
tamper is not detected.

If the SinkElement is a property, the property will be set to true if tampering is detected; false if not. The property
should be writable, accessible from the attributed method, and of boolean type. If the property is not static, it must be
defined on the same class as the attributed method, and the attributed method must not be static. The name of the
property must be specified in ApplicationNotificationSinkName. The generated code will make no attempt to
catch or handle exceptions thrown from the property setter. The type defining the property should be specified in
ApplicationNotificationSinkOwner; if ApplicationNotificationSinkOwner is left unset, Dotfuscator will
look for the property on the type defining the attributed method.

If the SinkElement is a field, the field will be set to true if tampering is detected; false if not. The field should be
accessible from the attributed method, and of boolean type. If the field is not static, it must be defined on the same class
as the attributed method, and the attributed method must not be static. The name of the field must be specified in
ApplicationNotificationSinkName. The type defining the field should be specified in
ApplicationNotificationSinkOwner; if ApplicationNotificationSinkOwner is left unset, Dotfuscator will look for the
field on the type defining the attributed method.

If the SinkElement is a method argument, the named argument should be a Delegate type and the Delegate must have
this signature: void(bool). The Delegate will be invoked with the boolean argument set to true if a tamper is
detected; false if not. The generated code will make no attempt to catch or handle exceptions thrown from the invoked
Delegate. The name of the method argument must be specified in ApplicationNotificationSinkName.
ApplicationNotificationSinkOwner is unused.

If the SinkElement is a Delegate, it should be a field of Delegate type. The Delegate will be invoked with the boolean
argument set to true if a tamper is detected; false if not. If the field is not static, it must be defined on the same class as
the attributed method, and the attributed method must not be static. The name of the field must be specified in
ApplicationNotificationSinkName. ApplicationNotificationSinkOwner is unused. The Delegate must
have this signature: void(bool). The generated code will make no attempt to catch or handle exceptions thrown
from the invoked Delegate.

Dotfuscator User's Guide 248

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

If the SinkElement is set to DefaultAction, Dotfuscator will inject code that exits the application if tampering is detected.

If the SinkElement is set to None, Dotfuscator will not inject any code to react if a tamper is detected (though
Dotfuscator will still generate code to send a message to a PreEmptive Analytics Endpoint if configured to do so).

Dotfuscator will remove this custom attribute from the metadata after instrumentation.

InsertTamperCheckAttribute

public class InsertTamperCheckAttribute : Attribute

Constructor Members

Name Summary

InsertTamperCheckAttribute() Initializes a new instance of the class.

Dotfuscator User's Guide 249

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Property Members

Dotfuscator User's Guide 250

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Property Members

Name Summary

ApplicationNotificationSinkElement :
SinkElements

Indicates whether and how to notify the application after a
tamper check, at the time that the attributed method is
called. A sink element may be a writable boolean field,
settable boolean property, a void(boolean) method to call,
or a Delegate to invoke. To use this property,
ApplicationNotificationSinkName must also be set. If
ApplicationNotificationSinkElement is a field, property,
or method, the ApplicationNotificationSinkOwner
should also be set if it is not in the same class as the
attributed method. If the SinkElement is set to
“DefaultAction”, Dotfuscator will inject code that exits the
application if tampering is detected.

ApplicationNotificationSinkName :
String

The name of the property, field, method to set or call after
a tamper check. If this property is set,
ApplicationNotificationSinkElement is required to be
set as well. If this property is not set, Dotfuscator will not
generate code that notifies the application of a tamper.

ApplicationNotificationSinkOwner :
Type

ApplicationNotificationSinkOwner indicates the name of
the type that defines the ApplicationNotificationSink
method, field, property, argument, or delegate. If not set,
the named sink element is searched for on the attributed
method’s type.

ExtendedKeyMethodArguements :
string

A pattern indicating which parameter names and values
should be automatically added to the messages extended
key data at runtime. See Automatically Sending Method
Parameters as Extended Keys for details on supported
patterns.

ExtendedKeySourceElement :
SourceElements

Indicates how to access the extended key dictionary at
runtime, at the time that the attributed method is called
(e.g. a field, property, method, or method parameter). To
use this property, ExtendedKeySourceName must also be
set. If ExtendedKeySourceElement is a field, method, or
property, ExtendedKeySourceOwner must also be set unless
the field, method or property is defined on the same class
as the attributed method.

ExtendedKeySourceName : string The name of the property, field, method, or method
parameter that will contain the extended key dictionary at
runtime, at the time that the attributed method is called. If

Dotfuscator User's Guide 251

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

this property is set, ExtendedKeySourceElement is required
to be set as well. If this property is not set, Dotfuscator will
not generate code to send extended key information.

ExtendedKeySourceOwner : Type If the ExtendedKeySourceElement is a field, method, or
property, ExtendedKeySourceOwner indicates the name of
the type that defines the field, method, or property. If not
set, the named source element is searched for on the
attributed method’s type.

s

2.6.4.1.9 PerformanceProbeAttribute
Summary

The PerformanceProbeAttribute is an instrumentation time attribute for methods. Dotfuscator will insert code to generate
and send a PreEmptive Analytics PerformanceProbe Message into any method with this attribute. Dotfuscator will remove
this custom attribute from the metadata after instrumentation.

PerformanceProbe Attribute

public class PerformanceProbeAttribute : Attribute

Constructor Members

Name Summary

PerformanceProbeAttribute() Initializes a new instance of the class.

Dotfuscator User's Guide 252

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Property Members

Name Summary

ExtendedKeyMethodArguements
: string

A pattern indicating which parameter names and values should be
automatically added to the messages extended key data at
runtime. See Automatically Sending Method Parameters as
Extended Keys for details on supported patterns.

ExtendedKeySourceElement :
SourceElements

Indicates how to access the extended key dictionary at runtime, at
the time that the attributed method is called (e.g. a field, property,
method, or method parameter). To use this property,
ExtendedKeySourceName must also be set. If
ExtendedKeySourceElement is a field, method, or property,
ExtendedKeySourceOwner must also be set unless the field,
method, or property is defined on the same class as the attributed
method.

ExtendedKeySourceName :
string

The name of the property, field, method, or method parameter
that will contain the extended key dictionary at runtime, at the
time that the attributed method is called. If this property is set,
ExtendedKeySourceElement is required to be set as well. If this
property is not set, Dotfuscator will not generate code to send
extended key information.

ExtendedKeySourceOwner :
Type

If the ExtendedKeySourceElement is a field, method or property,
ExtendedKeySourceOwner indicates the name of the type that
defines the field, method or property. If not set, the named source
element is searched for on the attributed method’s type.

InjectionPoint : InjectionPoints Where in the method to inject the generated code. Default to
beginning.

Name : string The name of this instance of the PerformanceProbeAttribute.
This can be used to distinguish between performance
measurements taken at different points during execution.

2.6.4.1.9.1 InjectionPoints
Summary

Places in a method to inject generated code.

Injection Points

public enum InjectionPoints

Dotfuscator User's Guide 253

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Enumeration Members

Field Summary

Beginning Inject code at the beginning of the method.

End Inject code at the end of the method.

2.6.4.1.10 SetupAttribute
Summary

The SetupAttribute is an instrumentation time attribute for methods. This attribute can be used to guide Application
Analytics instrumentation.

When applied to Application Analytics, Dotfuscator will insert PreEmptive Analytics initialization code into methods with
this attribute. There must be one or more methods with this attribute in an assembly or application that uses PreEmptive
Analytics code. At runtime, the initialization code will send PreEmptive Analytics application and session start messages
when this method is called. To further configure PreEmptive Analytics message sending, the developer can optionally
specify information about an application instance ID and an "opt in" flag. Dotfuscator will use this information when
generating the initialization code.

To configure the endpoint or destination of the analytics messages, Dotfuscator allows the StaticEndpoint property to be
set to an endpoint of your choice and will default to the commercial Runtime Intelligence portal.

Instance ID

The application instance ID (such as a serial number) is typically unique to a particular instance of the application and is
determined by the application at runtime. The developer can make the instance ID available at runtime to the PreEmptive
Analytics initialization code by specifying values for the InstanceIdSourceName, InstanceIdSourceElement, and
(optionally) InstanceIdSourceOwner properties. These fields are used to generate code that makes the instance ID
available to send in PreEmptive Analytics messages.

The InstanceIdSourceElement may be a string property, a string field, a no argument method that returns a string,
or a string method argument.

If it is a property or field, it should be writable, accessible from the attributed method, and of string type. If it is a method,
it should also be accessible from the attributed method. If the property, method, or field is not static, it must be defined
on the same class as the attributed method, and the attributed method must not be static. The name of the property,
method, or field must be specified in InstanceIdSourceName. The type defining the field, method, or property should
be specified in InstanceIdSourceOwner; if InstanceIdSourceOwner is left unset, Dotfuscator will look for the
property, method, or field on the type defining the attributed method.

If the InstanceIdSourceElement is a method argument, the named argument should be of type string. The name of
the method argument must be specified in InstanceIdSourceName. InstanceIdSourceOwner is unused

Dotfuscator User's Guide 254

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Offline Storage of Usage Data

PreEmptive Analytics instrumented applications have the ability to store usage data in situations when network access is
unavailable and then transmit the data when connectivity is restored. Usage data is stored in Isolated Storage. This
behavior is enabled by default and default connectivity detection code is injected into instrumented applications.
Developers can override the default behavior by changing the OfflineStateSourceElement. If the
OfflineStateSourceElement value is changed to None then usage data will not be stored when the application is
unable to connect to the network and that usage data will be dropped. Developers also have the ability to write their own
network detection code and make the network connectivity state available to the PreEmptive Analytics code by specifying
the applications offline state in a boolean value in the instrumented method's parameters, as the return value of a method
or in a field or property. This is accomplished by setting the OfflineStateSourceElement property to the appropriate
value and setting the OfflineStateSourceName and OfflineStateSourceOwner.

The application can also be notified of the success or failure of an attempt to store usage data to the offline storage
mechanism via the OfflineStorageResultSinkElement. If the value is None then no notification will be made of
the success or failure of the data storage. If the value is DefaultAction then if the storage mechanism is unable to store
any usage data the application will exit immediately. Developers can write code to react to the success or failure of offline
storage by setting the OfflineStorageResultSinkElement to the appropriate value and setting the
OfflineStorageResultSinkName and OfflineStorageResultSinkOwner. The selected application code will be
called with a parameter value or the boolean property or field will be set with the result of the most recent attempt to
save usage data to the offline storage mechanism.

Opt In

The Opt-In flag is another runtime determined value that indicates if the user of the application has given permission for
the application to send PreEmptive Analytics data. The developer can make the opt-in flag available at runtime to the
PreEmptive Analytics initialization code by specifying values for the OptInSourceName, OptInSourceElement, and
(optionally) OptInSourceOwner properties. These fields are used to generate code that makes the opt-in preference
available to the PreEmptive Analytics message sender.

The OptInSourceElement may be a boolean property, a boolean field, a no argument method that returns a boolean,
or a boolean method argument.

If it is a property or field, it should be writable, accessible from the attributed method, and of boolean type. If it is a
method, it should also be accessible from the attributed method. If the property, method, or field is not static, it must be
defined on the same class as the attributed method, and the attributed method must not be static. The name of the
property, method, or field must be specified in OptInSourceName. The type defining the field, method, or property
should be specified in OptInSourceOwner; if OptInSourceOwner is left unset, Dotfuscator will look for the property,
method, or field on the type defining the attributed method.

If the OptInSourceElement is a method argument, the named argument should be of type boolean. The name of the
method argument must be specified in OptInSourceName. OptInSourceOwner is unused

Dotfuscator will remove this custom attribute from the metadata after instrumentation.

Dotfuscator User's Guide 255

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

SetupAttribute

public class SetupAttribute : Attribute

Constructor Members

Name Summary

SetupAttribute() Initializes a new instance of the class.

Dotfuscator User's Guide 256

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Property Members

Dotfuscator User's Guide 257

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Property Members

Name Summary

EndpointSourceElement :
SourceElements

Indicates if the StaticEndpoint or a runtime determined endpoint
will be used. Specifying None or DefaultAction will use the
endpoint specified by the StaticEndpoint attribute.

EndpointSourceName : String The name of the property, field, method, or method parameter
that will contain the endpoint URL. If this property is set,
EndpointSourceElement is required to be set to something other
than None or DefaultAction.

EndpointSourceOwner : Type If the EndpointSourceElement is a field, method or property,
EndpointSourceOwner indicates the name of the type that defines
the field, method or property. If not set, the named source
element is searched for on the attributed method’s type.

ExtendedKeyMethodArguements
: String

A pattern indicating which parameter names and values should be
automatically added to the messages extended key data at
runtime. See Automatically Sending Method Parameters as
Extended Keys for details on supported patterns.

ExtendedKeySourceElement :
SourceElements

Indicates how to access the extended key dictionary at runtime,
at the time that the attributed method is called (e.g. a field,
property, method, or method parameter). To use this property,
ExtendedKeySourceName must also be set. If
ExtendedKeySourceElement is a field, method, or property,
ExtendedKeySourceOwner must also be set unless the field,
method or property is defined on the same class as the attributed
method.

ExtendedKeySourceName :
String

The name of the property, field, method, or method parameter
that will contain the extended key dictionary at runtime, at the
time that the attributed method is called. If this property is set,
ExtendedKeySourceElement is required to be set as well. If this
property is not set, Dotfuscator will not generate code to send
extended key information.

ExtendedKeySourceOwner : Type If the ExtendedKeySourceElement is a field, method or property,
ExtendedKeySourceOwner indicates the name of the type that
defines the field, method or property. If not set, the named
source element is searched for on the attributed method’s type.

InstanceIdSourceElement :
SourceElements

Indicates how to access the instance ID at runtime, at the time
that the setup method is called (e.g. a field, property, or method
parameter). To use this property, InstanceIdSourceName must
also be set. If InstanceIdSourceElement is a field or property,

Dotfuscator User's Guide 258

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

InstanceIdSourceOwner must also be set unless the field or
property is defined on the same class as the attributed method.

InstanceIdSourceName : String The name of the property, field, or method parameter that will
contain the instance ID at runtime, at the time that the setup
method is called. If this property is set,
InstanceIdSourceElement is required to be set as well. If this
property is not set, Dotfuscator will not generate code that sends
an instance Id with PreEmptive Analytics messages.

InstanceIdSourceOwner : Type If the InstanceIdSourceElement is a field or property,
InstanceIdSourceOwner indicates the name of the type that
defines the field or property. If not set, the named source element
is searched for on the attributed method’s type.

OfflineStateSourceElement :
SourceElements

Indicates how to access the applications offline/online state at
runtime, at the time that the setup method is called (e.g. a field,
property, or method parameter). If neither DefaultAction nor
None is selected then OfflineStateSourceName must also be
set. If OfflineStateSourceElement is a field or property,
OfflineStateSourceOwner must also be set unless the field or
property is defined on the same class as the attributed method. If
the value of this property is DefaultAction then application usage
data will be automatically stored by the offline storage mechanism
(using Isolated Storage) when the analytics data endpoint is
unavailable. If the value of this property is None then application
usage data will not be stored when the analytics data endpoint is
unavailable.

OfflineStateSourceName : String The name of the property, field, or method parameter that will
contain the offline state of the application at runtime, at the time
that the setup method is called. If this property is set,
OfflineStateSourceElement is required to be set as well.

OfflineStateSourceOwner : Type If the OfflineStateSourceElement is a field or property,
OfflineStateSourceOwner indicates the name of the type that
defines the field or property. If not set, the named source element
is searched for on the attributed method’s type.

OfflineStorageResultSinkElement
: SourceElements

Indicates how the application is notified when usage data is stored
to the offline storage mechanism. If this property is not
DefaultAction or None then OfflineStorageResultSinkName
must also be set. If OfflineStorageResultSinkElement is a field
or property, OfflineStorageResultSinkOwner must also be set
unless the field or property is defined on the same class as the
attributed method. If the value of this property is None then no
notification will take place when application usage data is saved to
the offline storage mechanism. If the value of this property is

Dotfuscator User's Guide 259

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

DefaultAction then the application will exit immediately when a
storage failure occurs

OfflineStorageResultSinkName :
String

The name of the property, field, or method parameter that will
contain the most recent result of the application storing usage
data to the offline storage mechanism If this property is set,
OfflineStorageResultSinkElement is required to be set as well.

OfflineStorageResultSinkOwner :
Type

If the OfflineStorageResultSinkElement is a field or property,
OfflineStorageResultSinkOwner indicates the name of the type
that defines the field or property. If not set, the named source
element is searched for on the attributed method’s type.

OptInSourceElement :
SourceElements

Indicates how to access the opt-in flag at runtime, at the time
that the setup method is called (e.g. a field, property, or method
parameter). To use this property, OptInSourceName must also be
set. If OptInSourceElement is a field or property,
OptInSourceOwner must also be set unless the field or property is
defined on the same class as the attributed method.

OptInSourceName : String The name of the property, field, or method parameter that will
contain the opt-in flag at runtime, at the time that the setup
method is called. If this property is set, OptInSourceElement is
required to be set as well. If this property is not set, Dotfuscator
will generate code that sends PreEmptive Analytics messages all
the time.

OptInSourceOwner : Type If the OptInSourceElement is a field or property,
OptInSourceOwner indicates the name of the type that defines the
field or property. If not set, the named source element is searched
for on the attributed method’s type.

StaticEndpoint : String Defines the destination URI for PreEmptive Analytics messages.
This URI must represent the endpoint for a web service which will
consume PreEmptive Analytics messages. If this property is not
set, null, or empty, PreEmptive Analytics messages will be sent to
the well-known URI representing PreEmptive's commercial
Runtime Intelligence Services endpoint.

UseSSL : Boolean Use HTTPS protocol when sending PreEmptive Analytics messages
to a PreEmptive Analytics Endpoint. Default value is true.

2.6.4.1.11 SinkElements

Dotfuscator User's Guide 260

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Summary

Possible sinks for data meant to be provided by instrumented code. Examples include the application tamper notification
specified in the InsertTamperCheckAttribute.

SinkElements

public enum SinkElements : Attribute

Enumeration Members

Field Summary

Field The sink element is a field.

MethodArgument The sink element is a method argument that is a Delegate type.

Method The sink element is a method to be called.

None No sink element. Individual attributes might implement the default
action’s behavior if no sink element is specified. See the attribute
documentation for details.

Property The sink element is a settable property.

Delegate The sink element is a field that is a field that is a Delegate type.

DefaultAction Perform the default action when a sink is required. Individual
attributes have different default actions.

2.6.4.1.12 SourceElements
Summary

Possible sources for data meant to be consumed by PreEmptive Analytics generated code. Examples include the
application instance ID and opt-in flag specified in the SetupAttribute.

SourceElements

public enum SourceElements : Attribute

Dotfuscator User's Guide 261

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Enumeration Members

Field Summary

Field The source element is a field.

Method The source element is a method to be called.

MethodArgument The source element is a method argument.

None No source element. This is the default value.

Property The source element is a property.

2.6.4.1.13 SystemProfileAttribute
Summary

The SystemProfileAttribute is an instrumentation time attribute for methods. Dotfuscator will insert code to generate and
send a PreEmptive Analytics Profile Message into any method with this attribute. Dotfuscator will remove this custom
attribute from the metadata after instrumentation. This attribute has no properties outside the optional
ExtendedKeysSource properties that all PreEmptive Analytics attributes have.

SystemProfile Attribute

public class SystemProfileAttribute : Attribute

Constructor Members

Name Summary

SystemProfileAttribute() Initializes a new instance of the class.

Dotfuscator User's Guide 262

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Property Members

Name Summary

ExtendedKeyMethodArguements
: string

A pattern indicating which parameter names and values should be
automatically added to the messages extended key data at
runtime. See Automatically Sending Method Parameters as
Extended Keys for details on supported patterns.

ExtendedKeySourceElement :
SourceElements

Indicates how to access the extended key dictionary at runtime, at
the time that the attributed method is called (e.g. a field, property,
method, or method parameter). To use this property,
ExtendedKeySourceName must also be set. If
ExtendedKeySourceElement is a field, method, or property,
ExtendedKeySourceOwner must also be set unless the field,
method, or property is defined on the same class as the attributed
method.

ExtendedKeySourceName :
string

The name of the property, field, method, or method parameter
that will contain the extended key dictionary at runtime, at the
time that the attributed method is called. If this property is set,
ExtendedKeySourceElement is required to be set as well. If this
property is not set, Dotfuscator will not generate code to send
extended key information.

ExtendedKeySourceOwner :
Type

If the ExtendedKeySourceElement is a field, method or property,
ExtendedKeySourceOwner indicates the name of the type that
defines the field, method or property. If not set, the named source
element is searched for on the attributed method’s type.

2.6.4.1.14 TeardownAttribute
Summary

The TeardownAttribute is an instrumentation time attribute for methods. This attribute can be used to guide Application
Analytics instrumentation.

When used for Application Analytics, Dotfuscator will insert PreEmptive Analytics cleanup code into any method with this
attribute. There must be one or more methods with this attribute in an assembly or application that uses PreEmptive
Analytics instrumentation. At runtime, the cleanup code will send a PreEmptive Analytics application and session stop
messages when this method is called.

Dotfuscator will remove this custom attribute from the metadata after instrumentation.

TeardownAttribute

public class TeardownAttribute : Attribute

Dotfuscator User's Guide 263

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Constructor Members

Name Summary

TeardownAttribute() Initializes a new instance of the class.

Property Members

Name Summary

ExtendedKeyMethodArguements
: string

A pattern indicating which parameter names and values should be
automatically added to the messages extended key data at
runtime. See Automatically Sending Method Parameters as
Extended Keys for details on supported patterns.

ExtendedKeySourceElement :
SourceElements

Indicates how to access the extended key dictionary at runtime, at
the time that the attributed method is called (e.g. a field, property,
method, or method parameter). To use this property,
ExtendedKeySourceName must also be set. If
ExtendedKeySourceElement is a field, method, or property,
ExtendedKeySourceOwner must also be set unless the field,
method or property is defined on the same class as the attributed
method.

ExtendedKeySourceName :
string

The name of the property, field, method, or method parameter
that will contain the extended key dictionary at runtime, at the
time that the attributed method is called. If this property is set,
ExtendedKeySourceElement is required to be set as well. If this
property is not set, Dotfuscator will not generate code to send
extended key information.

ExtendedKeySourceOwner :
Type

If the ExtendedKeySourceElement is a field, method or property,
ExtendedKeySourceOwner indicates the name of the type that
defines the field, method or property. If not set, the named source
element is searched for on the attributed method’s type.

2.6.5 The Map File
Dotfuscator generates a mapping file that associates old with new names. The new names of the classes, methods, and
fields are shown. Bug tracking becomes difficult after renaming, especially with a high incidence of method overloading,
making the map file essential.

The map file can be used to Decode Obfuscated Stack Traces as well as for Incremental Obfuscation. The map file also
provides statistics regarding the overall effectiveness of renaming.

The elements of the mapping file are all very similar. A few things are noteworthy:

Dotfuscator User's Guide 264

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

If a <newname> element is absent, then the item was not renamed.
In type names, nested class names are separated from the parent using the “/” character.
Constructors are named .ctor, while static constructors (a.k.a. static initializers, class constructors, etc) are named
.cctor. These are never renamed.

For additional reference, see the governing DTD for the map file.

2.6.5.1 dotfuscatorMap_v1.1.dtd
The dotfuscatorMap_v1.1.dtd DTD describes the format of the renaming map file produced and consumed by Dotfuscator
version. A copy is available at www.preemptive.com/dotfuscator/dtd/dotfuscatorMap_v1.1.dtd.

2.6.6 Advanced Topics
The following sections detail advanced Dotfuscator usage.

2.6.6.1 Side by Side Installs
Multiple versions of Dotfuscator can be installed side by side from version 4.11 and up. To enable this click on the
"advanced" button in the installer wizard and select "Install Side by Side With Current Installations". You can also
configure which version of Dotfuscator will be used by Visual Studio by default for Dotfuscator Projects. You can select
"latest Major", "latest Major.Minor", or the specific version you are installing. You can change the default later by editing
the registry key at HKCU\Software\PreEmptive\Dotfuscator\DefaultMSBuildPath.

MSBuild Extensions

If you uninstall the most recent version, it will leave behind its MSBuild task and target files in the major and major.minor
directories. To revert the major or major.minor files to a prior version you should either copy them from a specific
version's subdirectory or manually delete the files and perform a repair on the version you want to revert to through
Add/Remove Programs.

Visual Studio Integration

When doing a side by side installation, you can disable the Visual Studio integration features to not overwrite the current
Visual Studio integrated Dotfuscator. If the version of Dotfuscator that is integrated with Visual Studio is uninstalled and
you wish to revert to another version for integration, go into Add/Remove programs and select change on that version of
Dotfuscator and first disable the integration and complete and then rerun the change with the feature enabled.

Dotfuscator User's Guide 265

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

http://www.preemptive.com/dotfuscator/dtd/dotfuscatorMap_v1.1.dtd

Please note that the procedure given here will allow multiple versions of Dotfuscator to be run via the command line, via
MSBuild, and as the standalone Dotfuscator UI, but only one version of Dotfuscator may be integrated with Visual Studio
at a time.Because a Dotfuscator Visual Studio Project is compatible with MSBuild, you can use a single .dotfuproj file for
running in both contexts. However, Visual Studio integration is not capable of using the version of Dotfuscator pointed to
by the DotfuscatorBinPath property. Visual Studio integration will always build using the latest installed version of
Dotfuscator. If the DotfuscatorBinPath is not the default, you will get the following warning: "This Dotfuscator Project has
a DotfuscatorBinPath or DotfuscatorDataPath different from the installed Visual Studio Dotfuscator extension."

2.6.6.2 Concurrent Builds
When running multiple copies of Dotfuscator simultaneously, it is recommended that the following files be copied into
the same directory as the Dotfuscator executable:

dotfuscator.dat (normally in %PROGRAMDATA%\PreEmptive Solutions\Dotfuscator

[Edition]\4.0)

dfusrprf.xml (normally in %LOCALAPPDATA%\PreEmptive Solutions\Dotfuscator

[Edition]\4.0)

dotfuscator.cfg (normally in %LOCALAPPDATA%\PreEmptive Solutions\Dotfuscator

[Edition]\4.0)

2.7 Samples
This section contains descriptions of additional sample applications that are designed to show you how to configure
Dotfuscator for various types of .NET applications.

If you are looking for a simple example that will let you quickly get familiar with Dotfuscator, see Getting Started with
Dotfuscator.

The samples here are explained using C#. Samples explained using VB.NET are available on our web site and in the
Dotfuscator installation directory. If your installer did not place these samples in your Dotfuscator installation directory,
the sample files are also freely available for download at www.preemptive.com/dotfuscator-samples.html.

2.7.1 Reflection Sample
The reflection sample demonstrates issues that occur when using Dotfuscator with applications that make use of dynamic
class loading and method invocation. These powerful technologies allow applications to delay specification of code to be
executed until runtime. In these cases, it is impossible to statically predict what classes and methods might be invoked at
runtime; therefore, it is impossible for Dotfuscator to infallibly determine which identifiers should be excluded from
renaming. Fortunately, Dotfuscator has rich facilities for the fine-tuning of renaming rules.

The reflection sample demonstrates how to configure Dotfuscator to selectively exclude types and methods from
renaming. Instructions are included for using both the command line and the graphical interface of Dotfuscator.

Dotfuscator User's Guide 266

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

http://www.preemptive.com/dotfuscator-samples.html

2.7.1.1 Reflection Sample Files
The reflection sample includes the following files:

File Description

Reflection.doc This document

Reflection.cs C# file which demonstrates reflection techniques

reflection_config.xml Dotfuscator configuration file

make.bat Batch file for compiling the reflection application

run.bat Batch file to run Dotfuscator on the application

The reflection sample files can be downloaded at www.preemptive.com/dotfuscator-samples.html.

2.7.1.2 Building the Reflection Sample
The reflection sample assumes that the C# compiler (csc.exe) is reachable from your PATH environment variable. If you
are using Visual Studio, you can make sure that it is in your path by executing the Visual Studio Command Prompt
shortcut in your start menu.

From the command prompt, change your current directory to the directory containing the reflection sample.

Build the application by executing make.bat. This batch file will invoke the Visual C# compiler to produce the output file -
Reflection.exe.

2.7.1.3 Running the Reflection Sample
The reflection sample can be run by executing the Reflection.exe assembly produced by the make.bat command. The
reflection program dynamically loads a class from the current assembly with the following code:

Reflection Sample Code

 //get the requested type from current assembly
 assembly = this.GetType().Assembly;
 type = assembly.GetType(typename, true);
 instance = Activator.CreateInstance(type);

It is worth noting that the class that is loaded is specified by the string variable typename. Looking closer at the sample
code shows us that typename is initialized to the value Samples.Greeting.

Further on in the program, the SayGreetings method of Samples.Greeting is invoked dynamically with similar code:

Dotfuscator User's Guide 267

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

http://www.preemptive.com/dotfuscator-samples.html

Sample.Greeting Code

 MethodInfo method = type.GetMethod(methodname);
 …
 method.Invoke(instance,methodargs);

As its name suggests, the SayGreetings method displays some friendly messages on the console:

SayGreetings Friendly Messages

Hello Bob!
Goodbye Bob!

2.7.1.4 Dotfuscating the Reflection Output
The reflection sample contains a sample Dotfuscator configuration file that demonstrates using exclusion rules to exclude
these items invoked by reflection. This file is named reflection_config.xml and can be located in the same directory as
the rest of the reflection samples. The section of the file that excludes these references is:

Using Exclusion Rules to Exclude Items Invoked by Reflection

<renaming>
 <excludelist>
 <type name="Samples.Greetings">
 <method name="SayGreetings" signature="string" />
 </type>
 </excludelist>
…
</renaming>

The <renaming> tag indicates that the exclusion rules contained within pertain specifically to identifier renaming, as
opposed to other Dotfuscator features which can also be selectively turned on or off.

The <excludelist> tag defines a list of items that must be excluded from the renaming process. The <type
name="Samples.Greetings"> tag instructs Dotfuscator to exclude the class name "Samples.Greetings" from the
renaming process. Note that this only refers to the class name itself. All methods and fields belonging to the
"Greetings" class are still eligible to be renamed unless they are specifically excluded. We can see an example of this
with the <method name="SayGreetings" signature="string" /> entry.

Executing the make.bat file will run Dotfuscator with this configuration file. The output of this process is a Reflection.exe
assembly in the "output" subdirectory. This location can be controlled by modifying the following section in the
configuration file:

Modifying Location of the Output

Dotfuscator User's Guide 268

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

<output>
 <file dir="${projectdir}\output" />
</output>

Running the new assembly verifies that Dotfuscator correctly excluded the required items from the renaming process:

Friendly Messages Excluded from Renaming Process:

Hello Bob!
Goodbye Bob!

2.7.1.5 Configuring the Reflection Sample with the Graphical
User Interface

The Dotfuscator graphical interface provides a visual means to produce a configuration file. Items to be excluded from
renaming can be specified using the Rename tab of the interface:

Expanding the assembly node in the tree shows a graphical view of the application structure, including all namespaces,
types, and methods:

Dotfuscator User's Guide 269

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Graphically generating a renaming exclusion list is a simple matter of checking the boxes next to the item to be excluded.
In our reflection example, the required exclusions are made by checking the box next to the type "Greetings" and the
method "SayGreetings":

Building the project produces the correct output that can be verified with the Output tab of the application:

Dotfuscator User's Guide 270

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.7.1.6 Summary of the Reflection Sample
In order for you to successfully Dotfuscate an application that loads classes by name, invokes methods by name, or
references fields by name, you need to manually exclude the appropriate identifiers from renaming. Dotfuscator provides
a fine-grained, rule based facility for doing this.

2.7.2 Serialization Sample
The serialization sample demonstrates using Dotfuscator in an application that makes use of serialized objects that must
be exchanged with non-obfuscated code. If your obfuscated application is the only producer or consumer of the serialized
objects, then this sample does not apply.

Serialization must be considered when using Dotfuscator because all of the provided serialization formatters embed type
and field information in the persisted data stream. The implication of this is that classes and fields that are serialized must
be excluded from renaming, otherwise it would be impossible to de-serialize objects persisted with non-obfuscated code.
Since method definitions are not persisted, they do not need to be excluded from renaming.

The serialization sample demonstrates how to configure Dotfuscator to selectively exclude types and fields from
renaming. Instructions are included for using both the command line and the graphical interface.

2.7.2.1 Serialization Sample Files
The serialization sample includes the following files:

File Description

Serialization.doc This document

Serialization.cs C# file which demonstrates serialization techniques

serialization_config.xml Dotfuscator configuration file

make.bat Batch file for compiling the serialization application

run.bat Batch file to run Dotfuscator on the application

The serialization sample files can be downloaded at www.preemptive.com/dotfuscator-samples.html.

2.7.2.2 Building the Serialization Sample
The serialization sample assumes that the C# compiler (csc.exe) is reachable from your PATH environment variable. If you
are using Visual Studio, you can make sure that it is in your path by executing the Visual Studio Command Prompt
shortcut in your start menu.

Dotfuscator User's Guide 271

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

http://www.preemptive.com/dotfuscator-samples.html

From the command prompt, change your current directory to the directory containing the serialization sample.

Build the application by executing make.bat. This batch file will invoke the Visual C# compiler to produce the output file -
Serialization.exe.

2.7.2.3 Running the Serialization Sample
The serialization sample can be run by executing the Serialization.exe assembly produced by the make.bat command. The
application has two modes of operation controlled by command line parameters. The “-s” option, causes the application
to instantiate an object of type “Tester”, and persist it to the file “Sum.out”. Each Tester object has 3 integer fields that
make up the persisted data. The following code from the Tester class is used to persist the object:

Tester Class Code

 // create a file stream to write the file
 FileStream stream = new fileStream("Sum.out",FileMode.Create);

 BinaryFormatter formatter = new BinaryFormatter();
 // serialize to disk
 formatter.Serialize(stream,this);
 stream.Close();

The “-d” option, causes the application to de-serialize an object that had previously been persisted in the file “Sum.out”.
The following code is responsible for doing the de-serialization:

De-Serialization Code

 stream = new FileStream("Sum.out",FileMode.Open);
 BinaryFormatter formatter = new BinaryFormatter();
 return (Tester) formatter.Deserialize(stream);

2.7.2.4 Dotfuscating the Serialization Output
The serialization sample contains a sample Dotfuscator configuration file that demonstrates using exclusion rules to
exclude the information that makes up the persisted representation of an object. This file is named
serialization_config.xml and can be located in the same directory as the rest of the serialization samples. The section of
the file that excludes these references is:

Serializaiton Sample Reference File

Dotfuscator User's Guide 272

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

<renaming>
<excludelist>
 <type name="Samples.Tester">
 <field name=".*" regex="true" />
 </type>
</excludelist>
…
</renaming>

The <renaming> tag indicates that the exclusion rules contained within pertain specifically to identifier renaming, as
opposed to other Dotfuscator features which can also be selectively turned on or off.

The <excludelist> tag defines a list of items that must be excluded from the renaming process. The <type
name="Samples.Tester"> tag instructs Dotfuscator to exclude the class name "Samples.Tester" from the renaming
process. Note that this only refers to the class name itself. All methods of the "Tester" class are still eligible for
renaming. The <field name=".*" regex="true" /> tag instructs Dotfuscator to exclude all fields contained in the
Tester class. Instead of calling out each field individually, which would become unwieldy in a large class, this example uses
a regular expression to specify exclusion. In this case, it uses the very simple expression ".*" which matches all fields.

Executing the make.bat file will run Dotfuscator with this configuration file. The output of this process is a
Serialization.exe assembly in the “output” subdirectory. This location can be controlled by modifying the following
section in the configuration file:

Example Title

<output>
<file dir="${projectdir}\output" />
</output>

Running the new assembly verifies that Dotfuscator correctly excluded the required items from the renaming process. It is
also important to note that the obfuscated application can successfully de-serialize objects persisted with the non-
obfuscated application, and the non-obfuscated application can de-serialize objects persisted with the obfuscated
application. The serialized objects are completely compatible with one another.

2.7.2.5 Configuring the Serialization Sample with the
Graphical User Interface

The Dotfuscator graphical interface provides a visual means to produce a configuration file. Items to be excluded from
renaming can be specified using the Rename tab of the interface. Expanding the assembly node in the tree shows a
graphical view of the application structure, including all namespaces, types, and methods:

Dotfuscator User's Guide 273

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Graphically generating a renaming exclusion list is a two-step process in order to use the regular expression capability of
the interface. First, create a type exclusion rule to match on the type "Tester". Do this by pressing the Add Type button.
This adds a new node to the right-hand panel named simply Type.

Next, change the name field of this new node to Samples.Tester, reflecting the class to be excluded. Also, deselect the
regular expression option since there is only one class to be excluded:

To add the field exclusion rule, right click on the newly added Samples.Tester node. This will bring up a context menu.

Choosing Add Field, causes a new node to be added to the tree. Change the name to ".*" to indicate that this expression
should match all fields:

Dotfuscator User's Guide 274

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Pressing the Preview button applies the rules and shows the items that will be excluded in gray in the left-hand tree. A
quick inspection shows this to be the desired outcome, with all fields from Samples.Tester excluded:

Building the project produces the correct output that can be verified with the output tab of the application:

Dotfuscator User's Guide 275

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.7.2.6 Summary of the Serialization Sample
In order to Dotfuscate an application that exchanges serialized objects with external applications, you need to make sure
that the appropriate data elements are excluded from the renaming process. Dotfuscator provides extremely powerful
mechanism for defining these exclusion rules. By following these guidelines, you can help ensure that your Dotfuscated
application can safely exchange data with non-Dotfuscated applications with ease.

2.7.3 Remoting Sample
The remoting sample demonstrates using Dotfuscator in an application that makes use of .NET Remoting. In a typical
remoting application, objects that are to service remote invocations are registered with the runtime before they can be
invoked. When an invocation request arrives, the runtime instantiates a server object dynamically using reflection. Since
this process happens at runtime, there is no way for Dotfuscator to know at analysis time what types must be excluded.
Manual user intervention is required to make sure that Dotfuscator does not rename remoted types.

The remoting sample demonstrates how to configure Dotfuscator to selectively exclude types from renaming. This sample
also demonstrates how to configure multiple assemblies in the same Dotfuscator project. Instructions are included for
using both the command line and the graphical interface of Dotfuscator.

Dotfuscator User's Guide 276

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.7.3.1 Remoting Sample Files
The remoting sample includes the following files:

Files Description

Remoting.doc This document

TrigServer.cs File containing code for the remoting server

TrigClient.cs File containing code for the remoting client

ITrigFunctions.cs File containing the common interface

remoting_config.xml Dotfuscator configuration file

make.bat Batch file for compiling the remoting application

run.bat Batch file to run Dotfuscator on the application

The remoting sample files can be downloaded at www.preemptive.com/dotfuscator-samples.html.

2.7.3.2 Building the Remoting Sample
The remoting sample assumes that the C# compiler (csc.exe) is reachable from your PATH environment variable. If you
are using Visual Studio, you can make sure that it is in your path by executing the Visual Studio Command Prompt
shortcut in your start menu.

From the command prompt, change your current directory to the directory containing the remoting sample.

Build the application by executing make.bat. This batch file will invoke the Visual C# compiler to produce the output files –
TrigServer.exe, TrigClient.exe, ITrigFunctions.dll.

2.7.3.3 Running the Remoting Sample
The first step to running the remoting sample is to launch the TrigServer.exe assembly. This application will register a
new HTTP channel listener on port 12345, and register the class Samples.Trig to handle method invocations on that
channel. The code from TrigServer that does this is:

TrigServer Code

Dotfuscator User's Guide 277

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

http://www.preemptive.com/dotfuscator-samples.html

 // create a channel and start listening
 HttpChannel serverchannel = new HttpChannel(12345);
 ChannelServices.RegisterChannel(serverchannel);

 Type trigType = Type.GetType("Samples.Trig");

 // register our well-known type
 RemotingConfiguration.RegisterWellKnownServiceType(
 trigType,
 "TrigServer",
 WellKnownObjectMode.Singleton);

Once the server is established, the client application, TrigClient.exe, can be run. This application establishes an outgoing
HTTP channel and connects it to the TrigServer as can be seen in the following code:

Connect to TrigServer Code

 // create a channel for our client call
 HttpChannel clientchannel = new HttpChannel(0);
 ChannelServices.RegisterChannel(clientchannel);

 // get a reference to the remote Trig server
 MarshalByRefObject rawobject =
 (MarshalByRefObject)RemotingServices.Connect(
 typeof(Samples.ITrigFunctions),
 "http://localhost:12345/TrigServer");

After establishing the connection, the client invokes several methods on the remote server object:

Invoked Methods on Remote Server Object

 Console.WriteLine("Cos(0) = {0}", trig.Cos(0.0));
 Console.WriteLine("Sin(0) = {0}", trig.Sin(0.0));
 Console.WriteLine("Cos(PI) = {0}", trig.Cos(trig.PI()));

The output of the client application demonstrates correct operation of the application:

Output

About to make connection to remote server
Cos(0) = 1
Sin(0) = 0
Cos(PI) = -1

2.7.3.4 Dotfuscating the Remoting Output

Dotfuscator User's Guide 278

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The remoting sample contains a sample Dotfuscator configuration file that demonstrates using multiple input assemblies
and using exclusion rules to exclude the type information for the object invoked through remoting. The multiple input
assemblies are indicated in the configuration file with multiple <file> entries in the <input> assemblies list as shown:

Using Multiple Input Assemblies and Exclusion Rules

<input>
 <filelist>
 <file dir="${projectdir}" name="ITrigFunctions.dll"/>
 <file dir="${projectdir}" name="TrigServer.exe"/>
 <file dir="${projectdir}" name="TrigClient.exe"/>
 </filelist>
</input>

The other interesting aspect of the configuration file is the renaming exclusion list:

Renaming Exclusion List

<renaming>
 <excludelist>
 <type name="Samples.Trig" excludetype="true"/>
 </excludelist>
…
</renaming>

The <renaming> tag indicates that the exclusion rules contained within pertain specifically to identifier renaming, as
opposed to other Dotfuscator features which can also be selectively turned on or off.

The <excludelist> tag defines a list of items that must be excluded from the renaming process. The <type
name="Samples.Trig"> tag instructs Dotfuscator to exclude the class name "Samples.Trig" from the renaming
process. Note that this only refers to the class name itself. All methods of the “Trig” class are still eligible for renaming.
This is acceptable since we are Dotfuscating both the client and the server in this case. If we were creating an interface
that was going to be called by clients we did not Dotfuscate, we would also want to prevent renaming of the interface
methods as well. Since we included all assemblies in the same project, Dotfuscator will be able to rename method call
references to the appropriate renamed server method call.

Executing the make.bat file will run Dotfuscator with this configuration file. The outputs of this process are
TrigServer.exe, TrigClient.exe and ITrigFunctions.dll assemblies in the "output" subdirectory. This location can be
controlled by modifying the following section in the configuration file:

TrigServer

<output>
 <file dir="${projectdir}\output" />
</output>

Note: the 1:1 relationship between input and output assemblies cannot be changed.

Dotfuscator User's Guide 279

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Running the new assemblies verifies that Dotfuscator correctly excluded the required items from the renaming process. It
is also important to note that since we allowed the renaming of interface methods, it is not possible to have an
obfuscated client call a non-obfuscated server or vice-versa.

2.7.3.5 Configuring the Remoting Sample with the Graphical
User Interface

The remoting sample makes use of Dotfuscator’s ability to have multiple input assemblies. Multiple input assemblies can
be added with the graphical interface easily. Simply use the browse facility to locate each assembly individually. All input
assemblies will appear in the Input Assemblies: list box:

The type "Samples.Trig" which is defined in the TrigServer assembly must be excluded from renaming since it is
registered via reflection. The following figure shows this item selected for exclusion in the renaming tab of the interface:

After building, the output tab shows the results. Notice that everything except for the Samples.Trig class was renamed.

Dotfuscator User's Guide 280

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.7.3.6 Summary of the Remoting Sample
In order to Dotfuscate an application which serves objects to clients through remoting, it is important to exclude the type
names of the served objects from the renaming process. The power of Dotfuscator is enhanced in a remoting situation if
both the client and server are Dotfuscated together. In these cases, Dotfuscator can be aggressive and rename the
external interfaces of the components in addition to the internal methods and fields.

2.7.4 ASP.NET Sample
ASP.NET introduces the concept of code-behind to the suite of tools available to web developers. Code-behind enables
the development of a web application’s logic in any .NET language. This logic can then be pre-compiled into .NET
assemblies that are loaded on demand by the web server. Dotfuscator is able to process these assemblies and give your
web applications an added layer of protection above what is already provided by your server infrastructure.

The ASP.NET sample demonstrates how to configure Dotfuscator to selectively exclude types and fields from renaming.
Instructions are included for using both the command line and the graphical interface of Dotfuscator.

2.7.4.1 ASP.NET Sample Files
The ASP.NET sample includes the following files:

File Description

Dotfuscator User's Guide 281

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

asp.doc This document

DotfuscatorASP.aspx Main sample page

DotfuscatorASP.aspx.cs C# code-behind file containing code to be Dotfuscated

asp_config.xml Dotfuscator configuration file

make.bat Batch file for compiling the serialization application

run.bat Batch file to run Dotfuscator on the application

deploy.bat Batch file to copy the obfuscated assemblies to the web-accessible
location

The asp.net sample files can be downloaded at www.preemptive.com/dotfuscator-samples.html.

2.7.4.2 Preparing the ASP.NET Sample
This sample requires that IIS version 5.1 or greater be installed and configured on the target machine. It is necessary to
create a virtual directory in IIS configuration that references the location where the asp.net samples are installed. Refer to
the IIS documentation for instructions on how to set up a virtual directory.

2.7.4.3 Building the ASP.NET Sample
The asp.net sample assumes that the C# compiler (csc.exe) is reachable from your PATH environment variable. If you are
using Visual Studio, you can make sure that it is in your path by executing the Visual Studio Command Prompt shortcut
in your start menu.

From the command prompt, change your current directory to the directory containing the asp.net sample.

Build the application by executing make.bat. This batch file will invoke the Visual C# compiler to produce the output file -
DotfuscatorASP.dll. This will be placed in a “bin” subdirectory of the current location. This is the default location that IIS
will search for compiled code-behind assemblies.

2.7.4.4 Running the ASP.NET Sample
You can run the asp.net sample by directing your web browser to the DotfuscatorASP.aspx page in the virtual directory
established for this sample. The sample has been configured correctly if you see the following:

Dotfuscator User's Guide 282

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

http://www.preemptive.com/dotfuscator-samples.html

2.7.4.5 Examining the ASP.NET Sample Code
The aspx page itself is very simple:

ASPX Page

<%@ Page language="c#" Codebehind="DotfuscatorASP.aspx.cs" AutoEventWireup="false"
Inherits="DotfuscatorASP.Sample" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
 <HEAD>
 <title>Dotfuscator ASP.NET Sample</title>
 </HEAD>
 <body>
 <h1>Dotfuscator ASP.NET Sample</h1>
 <form id="SampleForm" method="post" runat="server">
 <p>You are visitor number <asp:Label id="CountLabel" runat="server"
/> to this site!</p>
 </form>
 </body>
</HTML>

All of the application logic resides in the DotfuscatorASP.aspx.cs code-behind file. Note that the aspx page references
the class "DotfuscatorASP.Sample" and the field "CountLabel". These items are defined in the code behind. Since
the aspx page is not processed until required by the web-server at runtime, these symbols must remain intact in the
compiled code-behind assembly. Since they cannot be renamed, special steps must be taken to ensure that Dotfuscator
will exclude them.

Dotfuscator User's Guide 283

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The class "DotfuscatorASP.Sample" has a static field, "PageLoadCount" that is incremented each time the page is
loaded. This value is what is displayed in the CountLabel field and can be seen by the end-user in the browser. Note that
this value is not persisted and will reset to the default value of 0 when the assembly is re-loaded by the web server.

2.7.4.6 Dotfuscating the ASP.NET Output
The asp.net sample contains a sample Dotfuscator configuration file that demonstrates using exclusion rules to handle
items referenced in an aspx file that are define in the code-behind assembly. This file is named asp_config.xml and can
be located in the same directory as the rest of the asp.net samples. The section of the file that excludes these references
is:

ASP.NET Directory

<renaming>
 <excludelist>
 <type name="DotfuscatorASP.Sample">
 <field name="CountLabel"/>
 </type>
 </excludelist>
…
</renaming>

The <renaming> tag indicates that the exclusion rules contained within pertain specifically to identifier renaming, as
opposed to other Dotfuscator features which can also be selectively turned on or off.

The <excludelist> tag defines a list of items which must be excluded from the renaming process. The <type
name="DotfuscatorASP.Sample"> tag instructs Dotfuscator to exclude the class name "DotfuscatorASP.Sample"
from the renaming process. Note that this only refers to the class name itself. All methods of the "Tester" class are still
eligible for renaming. This is required since the aspx file inherits from this class. The <field name="CountLabel"/>
tag instructs Dotfuscator to exclude the server-side label control that displays the page load count.

Executing the run.bat file will run Dotfuscator with this configuration file. The output of this process is a
DotfuscatorASP.dll assembly in the "output" subdirectory. This location can be controlled by modifying the following
section in the configuration file:

Outut Directory

<output>
 <file dir="output" />
</output>

Executing the deploy.bat file will copy the obfuscated assembly into the bin directory that will be searched by the web
server. This will overwrite the non-obfuscated assembly.

Dotfuscator User's Guide 284

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Visiting the website with the browser verifies that Dotfuscator correctly excluded the required items from the renaming
process. Note that the load count has been reset to the default value indicating that IIS has reloaded the new assembly.

2.7.4.7 Configuring the ASP.NET Sample with the Graphical
User Interface

The Dotfuscator graphical interface provides a visual means to produce a configuration file. Items to be excluded from
renaming can be specified using the Rename tab of the interface. Expanding the assembly node in the tree shows a
graphical view of the application structure, including all namespaces, types, and methods.

Graphically generating a renaming exclusion list is a simple matter of checking the box next to the items to be excluded.
In this case, we must exclude the type "DotfuscatorASP.Sample" and the field "CountLabel":

Building the project shows that the types were correctly excluded from the renaming process:

Dotfuscator User's Guide 285

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

2.7.4.8 Summary of the ASP.NET Sample
In order to Dotfuscate a web application which makes use of pre-compiled code-behind assemblies, care must be taken
to make sure that any symbols referenced by aspx files are excluded from the renaming process. This includes any types
that the aspx inherits from and any fields that it directly references by name. Everything else in the code-behind is eligible
for obfuscation.

Dotfuscator User's Guide 286

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

3 Index
64-bit assemblies, 40

A Note about XML Configuration Files, 211

accesspoint, 142-145

Advanced Topics

Advanced Topics, 35

Authenticode Signing Assemblies, 39-40

Build Events, 43-44

Declarative Obfuscation using Custom Attributes, 41-43

Dotfuscating 64-Bit Assemblies, 40

Dotfuscating Assemblies with Managed Resources, 37

Dotfuscating Assemblies with Satellite DLLs, 37

Dotfuscating Multi-module Assemblies, 37-38

Dotfuscating Strong Named Assemblies, 38-39

Finding External Tools, 44-45

Friend Assemblies, 44

Managed C++ and IJW (It Just Works) Thunking, 37

P/Invoke Methods, 37

Reflection and Dynamic Class Loading, 40-41

Smart Obfuscation, 35-37

advanced topics, 35 , 265

64-bit assemblies, 40

build events, 43-44

declarative obfuscation using custom attributes, 41-43

dotfuscating assemblies with managed resources , 37

dotfuscating assemblies with satellite DLLs , 37

Dotfuscator User's Guide 287

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

dotfuscating multi-module assemblies , 37-38

external tools, 44-45

friend assemblies, 44

IJW thunks, 37

p/invoke methods, 37

reflection and dynamic class loading, 40-41

smart obfuscation, 35-37

strong named assemblies, 38-39

application analytics, 151-153 , 142-145

configuring, 142-145

feature attribute, 151-153

application environment tracking, 153-154

application performance tracking, 153

ApplicationAttribute, 150 , 150-151 , 151 , 227-228

ASP.NET Sample Files, 281-282

ASP.NET Sample, 281

ASP.NET, 281

assembly attributes, 150 , 150-151 , 151 , 145-146

Assembly Level Attributes, 145-146

assembly linker, 109-110 , 108

assembly linking, 107 , 107-108 , 200 , 200 , 200-202

editor, 107

entry points, 109-110

in Dotfuscator, 33-34

name mangling, 108

prime assemblies, 108

Dotfuscator User's Guide 288

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

assembly load path, 188-189

assembly merging

in Dotfuscator, 33-34

attribute processing, 188

Authenticode , 39-40

Authenticode Signing Assemblies, 39-40

Authenticode

signing, 39-40

Automatically Sending Method Parameters as Extended Keys, 155-156

BinaryAttribute, 150 , 150-151 , 151 , 145-146 , 228-229

build command, 69

build directories, 77-88

Build Events, 43-44 , 77-88 , 206-208

in dotfuscator , 43-44

build settings, 77-88

Building and Debugging Obfuscated Applications, 33

Building the ASP.NET Sample, 282

Building the Project, 91 , 69

Building the Reflection Sample, 267

Building the Remoting Sample, 277

Building the Serialization Sample, 271-272

built-in rules tab, 99-100 , 105

removal, 105

rename, 99-100

BusinessAttribute, 150 , 150-151 , 151 , 145-146 , 229

character map, 111-112

Dotfuscator User's Guide 289

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Character Maps, 111-112

check for updates, 92 , 72

Class Renaming Options, 95-97

ClickOnce Inputs, 56-57

code protection

options, 195-196

Collecting User-specified Exception Report Information, 138-141

Command Line Interface Reference

Command Line Interface Reference, 169-170

Command Line Option Summary, 170-173

Launching the Graphical User Interface from the Command Line, 178-179

Saving a Configuration File from the Command Line, 177-178

Supplementing or Overriding a Configuration File from the Command Line, 173-177

Command Line Interface Reference, 169-170

command line interface, 169-170 , 170-173 , 173-177 , 177-178 , 178-179

configuration file, 173-177 , 177-178

Dotfuscator, 170-173 , 173-177

launching the GUI, 178-179

option summary, 170-173

using, 169-170

Command Line Option Summary, 170-173

command line quick start, 15 , 19-21

Concurrent Builds, 266

Conditional Includes List, 198-199

conditional includes tab, 104-105

conditional inclusion, 104-105

Dotfuscator User's Guide 290

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

configuration editors, 69 , 93 , 102-103 , 107 , 110-111 , 127-129

instrumentation editor, 127-129

linking editor, 107

premark editor, 110-111

removal editor, 102-103

renaming editor, 93

Configuration File Reference

A Note about XML Configuration Files, 211

Conditional Includes List, 198-199

Configuration File Reference, 181

ConstOnly Option, 197-198

Control Flow Exclusion List, 196

Control Flow Obfuscation Level, 195

Control Flow Obfuscation Options, 195-196

Control Flow Obfuscation Section, 195

Debug Global Option, 184-185

Declarative Obfuscation By Assembly, 187

Digital Signing Section, 205-206

Disable Linking Option, 200

Disable Removal Option, 197

EventList Section, 206-208

Extended Attributes Section, 209-210

Global Section, 183

HTML Renaming Report, 194

Input Assembly List, 185-186

Input Mapping File, 194-195

Dotfuscator User's Guide 291

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Instrumentation Processing By Assembly, 188

Library Global Option, 183

Library Mode By Assembly, 186-187

Linked Assemblies, 200-202

Linking Section, 200

NoDotfuscatorAttribute Global Option, 185

Obfuscation Attribute Feature Map, 189-190

Output Directory, 189

Output Mapping File, 193-194

PreEmptive Analytics Section , 208-209

PreMark Elements, 203-204

PreMark Options, 202-203

PreMark Section, 202

Property List and Properties, 181-183

Removal Referenced Rules, 199

Removal Report, 199-200

Removal Section (i.e. Pruning), 197

Removal Trigger List, 198

Renaming Exclusion List, 193

Renaming Options, 191-193

Renaming Referenced Rules, 193

Renaming Scheme, 190-191

Renaming Section, 190

Signing Section, 204-205

SmartObfuscation Section, 210-211

String Encryption Inclusion List, 196-197

Dotfuscator User's Guide 292

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

String Encryption Options, 196

String Encryption Section, 196

SuppressIldasmAttribute Global Option, 184

Temp Directory, 189

Transform XAML By Assembly, 188

User Defined Assembly Load Path, 188-189

Verbose, Quiet, and Investigate Global Options, 183-184

Version, 181

Configuration File Reference, 181

configuration files for Dotfuscator, 173-177 , 177-178 , 181

overriding, 173-177

saving, 177-178

supplementing, 173-177

configuration manager, 74-75

configuration properties, 77-88

Configuring and Running Dotfuscator with Application Analytics, 142-145

Configuring Dotfuscator via the GUI, 49

Configuring Message Tracing, 156-157

Configuring the ASP.NET Sample with the Graphical User Interface, 285-286

Configuring the Reflection Sample with the Graphical User Interface, 269-271

Configuring the Remoting Sample with the Graphical User Interface, 280-281

Configuring the Serialization Sample with the Graphical User Interface, 273-276

Configuring, 90-91 , 69

Constant-Only Pruning, 106

ConstOnly Option, 197-198

Control Flow

Dotfuscator User's Guide 293

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Control Flow, 30-31

control flow editor, 100

control flow exclude tab, 101-102

Control Flow Exclusion List, 196

Control Flow Obfuscation Level, 195

Control Flow Obfuscation Options, 195-196

Control Flow Obfuscation Section, 195

control flow obfuscation, 30-31 , 100-101 , 195 , 195 , 195-196 , 196

exclusion list, 101-102 , 196

level, 195

options tab, 100-101

options, 195-196

control flow options tab, 100-101

Control Flow, 30-31

Cover Page

Cover, 1-2

Cover, 1-2

Creating a Dotfuscator Project, 73

Creating Custom Rules, 116-117

Custom Attribute Reference, 227

custom attributes, 145 , 41-43 , 227 , 123-124

reference, 227

custom endpoint, 127-129

Custom Rules Reference

Custom Rules Reference, 211-212

Excluding Assemblies, 219

Dotfuscator User's Guide 294

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Excluding By Custom Attribute, 217-218

Excluding By Supertype, 218

Excluding Events, 217

Excluding Fields, 215-216

Excluding Methods, 214-215

Excluding Modules, 219

Excluding Namespaces, 212

Excluding Properties, 216

Excluding Types, 212-214

Exclusion Rules, 212

Including Assemblies, 226

Including By Custom Attribute, 224-225

Including By Supertype, 225-226

Including Events, 224

Including Fields, 222-223

Including Methods, 221-222

Including Modules, 226

Including Namespaces, 220

Including Properties, 223-224

Including Types, 220-221

Inclusion Rules, 219-220

Custom Rules Reference, 211-212

custom rules, 125 , 211-212 , 212 , 219-220

Customer Feedback Options, 168-169

Debug Global Option, 184-185

debug, 156 , 164-166 , 184-185

Dotfuscator User's Guide 295

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Debuglmpl, 184-185

DebugOpt, 184-185

options, 184-185

Pdb, 184-185

debugging obfuscated applications, 164-166

Debugging Obfuscated Code, 34-35

Declarative Obfuscation By Assembly, 187

Declarative Obfuscation using Custom Attributes, 41-43

Declarative Obfuscation, 41-43 , 125-126 , 187 , 189-190

feature map, 189-190

decode stack traces, 34-35

Decoding Obfuscated Stack Traces, 164-166

decoding stack traces, 164-166

decompilation, 13-14

decompiler, 13-14

defeating, 13-14

Deploying a Dotfuscator Project, 75

detection, 135 , 156

dictionary, 138-141

Digital Signing Section, 205-206

digital timestamp, 58-69

Directory Inputs, 55-56

Disable Linking Option, 200

Disable Removal Option, 197

Dotfuscate Task, 179-180

Dotfuscate, 37 , 179-180 , 268-269 , 272-273 , 284-285

Dotfuscator User's Guide 296

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

MSBuild task, 179-180

Dotfuscating 64-Bit Assemblies, 40

Dotfuscating Assemblies with Managed Resources, 37

Dotfuscating Assemblies with Satellite DLLs, 37

Dotfuscating Multi-module Assemblies, 37-38

Dotfuscating Strong Named Assemblies, 38-39

Dotfuscating the ASP.NET Output, 284-285

Dotfuscating the Reflection Output, 268-269

Dotfuscating the Remoting Output, 278-280

Dotfuscating the Serialization Output, 272-273

Dotfuscating, 37 , 37-38 , 38-39 , 40 , 41-43 , 179-180 , 268-269 , 272-273 , 278-280 , 284-285

Assemblies, 37 , 37 , 37-38 , 38-39 , 40

ObfuscationAttribute, 41-43

Dotfuscator configuration, 94-95 , 98 , 97-98 , 99 , 264-265 , 34 , 30-31 , 106 , 226-227 , 265 , 75-77 , 58-69
, 69 , 98-99 , 100-101 , 101-102 , 104-105 , 107 , 110-111 , 212 , 219-220 , 181 , 181 , 181-183 , 183 , 183 ,
183-184 , 184-185 , 185 , 185-186 , 186-187 , 187 , 188 , 188-189 , 189 , 189 , 189-190 , 190 , 190-191 , 191-
193 , 193 , 193 , 193-194 , 194 , 194-195 , 195 , 195 , 195-196 , 196 , 196 , 196 , 196-197 , 197 , 198-199 ,
199-200 , 200 , 202 , 202-203 , 203-204 , 204-205 , 206-208 , 208-209 , 209-210 , 210-211 , 211 , 188

assembly load path, 188-189

attributes, 209-210

extended, 209-210

build events, 206-208

conditional includes list, 104-105 , 198-199

control flow obfuscation, 30-31 , 100-101 , 101-102 , 195 , 195 , 195-196 , 196

debug, 184-185

DTD, 226-227

editors, 93 , 100 , 102 , 102-103 , 110-111 , 127-129

exclusion list, 99 , 98-99 , 101-102 , 212

Dotfuscator User's Guide 297

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

feature map, 189-190

global options, 181 , 183 , 183-184 , 184-185

honorOAs, 187

HTML removal report, 199-200

HTML renaming report, 194

inclusion list, 102 , 103-104 , 104-105 , 219-220

incremental obfuscation, 264-265 , 34

input assemblies, 75-77 , 107-108 , 185-186

input mapping file, 194-195

investigate, 183-184

library global options, 183

library, 181 , 183 , 184-185 , 186-187

linking, 107 , 107-108 , 200 , 200 , 200-202

mapping file, 264-265 , 265 , 93-94 , 193-194

nodotfuscatorattribute, 185

nohonorSOs, 188

nostripSOs, 188

output directory, 189

PreEmptive Analytics, 208-209

premark, 110-111 , 202 , 202-203 , 203-204

properties, 181 , 181-183

property list, 58-69 , 181 , 181-183

pruning, 197

quiet, 183-184

removal, 106 , 102-103 , 103-104 , 104-105 , 105 , 105-106 , 197 , 197 , 198 , 199 , 199-200

renaming, 95-97 , 94-95 , 98 , 97-98 , 99 , 93-94 , 190 , 190-191 , 191-193 , 193 , 193

Dotfuscator User's Guide 298

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

report, 106 , 105-106 , 194 , 199-200

signing, 204-205

smartobfuscation, 210-211

string encryption, 102 , 102 , 196 , 196 , 196-197

stripOA, 187

temp directory, 189

transform xaml, 188

verbose, 183-184

version attribute, 181

watermarking, 202 , 202-203 , 203-204

XML Serialization and renaming, 97-98

Dotfuscator Editions, 14-15

Dotfuscator GUI, 49 , 72 , 73 , 73-74 , 74-75 , 90-91 , 91 , 91-92 , 92 , 92-93 , 49-50 , 52-55 , 71-72 , 93-94 ,
98-99 , 99-100 , 100 , 100-101 , 101-102 , 102 , 102 , 102-103 , 103-104 , 104-105 , 105 , 105-106 , 107 ,
107-108 , 110-111 , 127-129 , 112-113 , 116-117 , 117 , 117-119

building, 91 , 69

conditional includes tab, 104-105

control flow editor, 100

control flow exclude tab, 101-102

control flow options tab, 100-101

custom attributes, 123-124

custom rules, 125

customer feedback options, 168-169

declarative obfuscation, 125-126

editing inclusion and exclusion rules, 112-113

editors, 90-91 , 93 , 100 , 102 , 102-103

events, 122-123

Dotfuscator User's Guide 299

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

field, 120-121

generate shelf life expiration token, 133-134

Help menu, 92

include triggers tab, 103-104

Input Assemblies, 88-90 , 52-55 , 107-108

instrumentation editor, 127-129

linked assemblies, 107-108

linking editor, 107

method, 119-120

namespace, 117

premark, 110-111

Project Tree, 73-74

property, 121-122

regular expressions, 116-117 , 117 , 117-119 , 119-120 , 120-121 , 121-122 , 122-123 , 123-124 , 126-
127

removal built-in rules tab, 105

removal options tab, 105-106

removal tab, 102-103

rename built-in rules tab, 99-100

rename exclude tab, 98-99

rename options tab, 93-94

set user preferences, 92-93

Solution Explorer, 73-74

spec list, 116-117 , 117 , 117-119 , 119-120 , 120-121 , 121-122 , 122-123 , 123-124 , 124-125

Standalone, 49-50 , 58-69 , 70-71 , 72

output, 69-70

Dotfuscator User's Guide 300

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

string encryption include tab, 102

supertypes, 124-125

type, 117-119

View menu, 91-92 , 70-71

Visual Studio Integration, 72 , 73-74 , 75 , 90-91 , 91-92

working with projects, 50-52

Dotfuscator Project, 72 , 73 , 73-74 , 74-75 , 75 , 77-88

configuring, 74-75

creating, 73

deploying, 75

project tree, 73-74

properties, 77-88

Dotfuscator renaming scheme, 190-191

loweralpha, 190-191

numeric, 190-191

unprintable, 190-191

upperalpha, 190-191

Dotfuscator Standalone GUI, 75-77 , 50-52 , 58-69 , 69 , 69-70 , 70-71 , 72

Dotfuscator, 13 , 17-19 , 19-21 , 21-25 , 25-28 , 108 , 109-110 , 108 , 32 , 32-33 , 137 , 197 , 200

assembly linker, 109-110 , 108

assembly linking, 108

command line quick start, 19-21

configuration, 181 , 181

creating a project, 73

Exception Tracking, 137

GUI, 72 , 73-74 , 71-72

Dotfuscator User's Guide 301

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Linking Option, 200

project, 73 , 74-75 , 77-88

Removal Option, 197

Shelf Life, 32-33

standalone GUI quick start, 17-19

Tamper Notification, 32

understanding obfuscated output, 15 , 25-28

Visual Studio Integration quick start, 21-25

dotfuscator_v2.3.dtd, 226-227

dotfuscatorMap_v1.1.dtd, 265

Downloading Message Data, 157

DTD, 226-227 , 265 , 211

Dotfuscator configuration file, 226-227 , 265 , 211

mapping file, 226-227 , 265 , 211

Editing and Deleting Rules, 125

elements, 113-116

selecting individual, 113-116

Enhanced Overload-Induction Method Renaming, 94-95

enhancedOI, 191-193

Dotfuscator renaming option, 191-193

Entry Point Attributes, 146-149

Entry Points, 109-110 , 146-149 , 108-109

method, 146-149

setting, 108-109

Environment Attributes, 153-154

EventList Section, 206-208

Dotfuscator User's Guide 302

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

events, 122-123

Examining the ASP.NET Sample Code, 283-284

Example PreEmptive Analytics Enabled Application , 157-164

Exception Actions, 137-138

exception notification, 137-138

Exception Reporting, 137

Exception Tracking

Collecting User-specified Exception Report Information, 138-141

Exception Actions, 137-138

Exception Reporting, 137

Exception Tracking, 137 , 48

Exception Tracking Attributes, 151

Exception Tracking, 137 , 48 , 137 , 137-138 , 138-141

exception notification, 137-138

in Dotfuscator, 137

notification, 137-138

overview, 48

user-specified report, 138-141

exception, 137 , 48

ExceptionTrack attribute, 137 , 230-235

ExceptionTrackAttribute, 230-235

ExceptionTracking

ExceptionTrack attribute, 137

ExceptionTypes, 235-236

Excluding Assemblies, 219

Excluding By Custom Attribute, 217-218

Dotfuscator User's Guide 303

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Excluding By Supertype, 218

Excluding Events, 217

Excluding Fields, 215-216

Excluding Methods, 214-215

Excluding Modules, 219

Excluding Namespaces, 212

Excluding Properties, 216

Excluding Types, 212-214

exclusion rules, 211-212 , 212

exit method, 149-150

Exit Point Attributes, 149-150

Expiration and Warning Actions, 130-132

Expiration and Warning Reporting, 132-133

expiration detection, 130-132

expiration notification, 132-133 , 130-132

Extended Attributes Section, 209-210

extended attributes, 209-210

Extracting a Watermark, 112

feature map, 189-190

Feature Usage Attributes, 151-153

FeatureAttribute, 151-153 , 236-240 , 240-246 , 246-247

FeatureEventTypes, 240

field, 120-121

Find feature, 127-129

Finding External Tools, 44-45

Friend Assemblies, 44

Dotfuscator User's Guide 304

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

in Dotfuscator, 44

Generate New Shelf Life Token, 133-134

Getting Started

Command Line Quick Start, 19-21

Getting Started, 15

Observing and Understanding Obfuscated Output, 25-28

Registering and Activating Dotfuscator, 15-17

Standalone GUI Quick Start, 17-19

Visual Studio Integrated UI Quick Start, 21-25

Getting Started, 15

global options, 77-88 , 181 , 183 , 183 , 183-184 , 184-185 , 185

debug, 181 , 183 , 184-185

investigate, 183-184

library, 181 , 183

nodotfuscatorattribute, 185

quiet, 183-184

verbose, 183-184

Global Section, 183

graphical rules editing interface, 112-113

Graphical User Interface Reference, 49

Graphical User Interface, 72 , 49-50 , 112-113

GUI Guide

Building the Project, 91 , 69

Configuring Dotfuscator via the GUI, 49

Configuring, 90-91 , 69

Creating a Dotfuscator Project, 73

Dotfuscator User's Guide 305

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Creating Custom Rules, 116-117

Customer Feedback Options, 168-169

Decoding Obfuscated Stack Traces, 164-166

Deploying a Dotfuscator Project, 75

Editing and Deleting Rules, 125

Generate New Shelf Life Token, 133-134

Input Assemblies and Linked Assemblies, 107-108

Input Assembly Properties, 88-90

Input Package Properties, 90

Instrumentation (Tamper, Shelf Life, Exception, Analytics), 127-129

Previewing Rules, 126-127

Project Configurations, 74-75

Project Properties, 77-88

Selecting By Custom Attribute, 123-124

Selecting By Event, 122-123

Selecting By Field, 120-121

Selecting By Method, 119-120

Selecting By Namespace, 117

Selecting By Property, 121-122

Selecting By Supertype, 124-125

Selecting By Type, 117-119

Selecting Individual Elements, 113-116

Set User Preferences, 92-93 , 71-72

Setting Entry Points, 108-109

Solution Explorer and the Dotfuscator Project Tree, 73-74

The Built-In Rules Tab, 105

Dotfuscator User's Guide 306

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The Conditional Includes Tab, 104-105

The Control Flow Editor, 100

The Control Flow Exclude Tab, 101-102

The Control Flow Options Tab, 100-101

The Help Menu, 92 , 72

The Include Triggers Tab, 103-104

The Linking Editor, 107

The Options Tab, 105-106

The Output Tab, 69-70

The PreMark Editor, 110-111

The Removal Editor, 102-103

The Rename Built-In Rules Tab, 99-100

The Rename Exclude Tab, 98-99

The Rename Options Tab, 93-94

The Renaming Editor, 93

The Rules Editing Interface, 112-113

The Settings Tab, 58-69

The Standalone GUI, 49-50

The String Encryption Editor, 102

The String Encryption Include Tab, 102

The View Menu, 91-92

The Visual Studio Interface, 72

Using Declarative Obfuscation with Rules, 125-126

Viewing Project Files and Reports, 70-71

Working with Inputs, 75-77 , 52-55

Working with Projects, 50-52

Dotfuscator User's Guide 307

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Help menu, 92 , 92-93 , 72

honorOAs, 187

HTML removal report, 105-106

HTML Renaming Report, 194

identifier renaming, 29-30

as obfuscation technique, 29-30

IJW thunks , 37

ilasm.exe, 44-45

using with Dotfuscator, 44-45

ildasm.exe, 44-45

using with Dotfuscator, 44-45

include triggers tab, 103-104

Including Assemblies, 226

Including By Custom Attribute, 224-225

Including By Supertype, 225-226

Including Events, 224

Including Fields, 222-223

Including Methods, 221-222

Including Modules, 226

Including Namespaces, 220

Including Properties, 223-224

Including Types, 220-221

inclusion rules, 211-212 , 219-220

incremental obfuscation, 264-265 , 34

InjectionPoints, 253-254

Input Assemblies and Linked Assemblies, 107-108

Dotfuscator User's Guide 308

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

input assemblies, 75-77 , 88-90 , 52-55 , 185-186

properties, 88-90

Input Assembly List, 185-186

Input Assembly Properties, 88-90

Input Mapping File, 194-195

Input Package Properties, 90

input tab, 75-77

InsertShelfLife attribute, 132-133 , 130-132 , 240-246

InsertShelfLifeAttribute, 240-246

InsertSignofLifeAttribute, 246-247

InsertTamperCheck attribute, 135 , 135-136 , 247-252

InsertTamperCheckAttribute, 247-252

Instrumentation (Tamper, Shelf Life, Exception, Analytics), 127-129

Instrumentation

Assembly Level Attributes, 145-146

Automatically Sending Method Parameters as Extended Keys, 155-156

Configuring and Running Dotfuscator with Application Analytics, 142-145

Configuring Message Tracing, 156-157

Downloading Message Data, 157

Entry Point Attributes, 146-149

Environment Attributes, 153-154

Example PreEmptive Analytics Enabled Application , 157-164

Exception Tracking Attributes, 151

Exit Point Attributes, 149-150

Feature Usage Attributes, 151-153

Instrumentation Injection, 46-48

Dotfuscator User's Guide 309

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Performance Attributes, 153

PreEmptive Analytics Custom Attributes , 145

PreEmptive Analytics, 141-142

Sending User Defined Data with Extended Keys, 154-155

Shelf Life and Sign of Life Attributes, 150-151

Tamper Notification Attributes, 150

Testing and Debugging Applications with Application Analytics, 156

Understanding Instrumentation with Dotfuscator, 45-46

Watching Messages, 157

instrumentation editor, 127-129

Instrumentation Injection, 46-48

Instrumentation Processing By Assembly, 188

intellectual property, 13-14

Introduce Explicit Method Overrides When Renaming, 98

Introduction

Building and Debugging Obfuscated Applications, 33

Dotfuscator Editions, 14-15

Dotfuscator, 13

Introduction, 13-14

Protection Concepts, 29

Understanding Obfuscation with Dotfuscator, 28-29

Introduction, 13-14

keephierarchy, 191-193

Dotfuscator renaming option, 191-193

keepnamespace, 191-193

Dotfuscator renaming option, 191-193

Dotfuscator User's Guide 310

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Launching the Graphical User Interface from the Command Line, 178-179

Library Global Option, 183

library global options, 181 , 183

Library Mode By Assembly, 186-187

library, 183 , 186-187

global options, 181 , 183

Linked Assemblies, 200-202

Linking

Entry Points, 109-110

Linking, 33-34

Name Mangling, 108

Prime Assemblies, 108

linking editor, 107

Linking Section, 200

Linking, 33-34 , 107 , 200 , 200 , 200-202

assembly -ies, 108

assembly, -ies, 200 , 200 , 200-202

editor, 107

in Dotfuscator, 33-34 , 107

options, 200

loweralpha, 190-191

Dotfuscator renaming scheme, 190-191

Lucidator, 34-35

Managed C++ and IJW (It Just Works) Thunking, 37

managed C++ assemblies, 37

managed resources, 37

Dotfuscator User's Guide 311

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

mapping file, 264-265 , 193-194 , 194-195 , 211

DTD, 211

input, 194-195

output, 193-194

message, 156-157 , 157 , 157

configuring, 156-157

download data, 157

watching, 157

method, 119-120

MSBuild Task Reference

Dotfuscate Task, 179-180

MSBuild Task Reference, 179

PreMark Task, 180-181

MSBuild Task Reference, 179

MSBuild, 179 , 179-180 , 180-181

Dotfuscator tasks, 179 , 179-180

multi-module assemblies, 37-38

Name Mangling, 108

namespace, 117

selecting by, 117

NoDotfuscatorAttribute Global Option, 185

nodotfuscatorattribute, 185

nohonorSOs, 188

nostripSOs, 188

numeric, 190-191

Dotfuscator renaming scheme, 190-191

Dotfuscator User's Guide 312

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

ObfuscateAssemblyAttribute, 41-43 , 187

obfuscating assemblies containing, 37 , 37 , 37 , 40-41

obfuscating, 37 , 37 , 37 , 37 , 37-38 , 38-39 , 40 , 40-41 , 41-43 , 43-44 , 44-45 , 266

64-bit assemblies, 40

assemblies containing or using reflection, 266

assemblies containing or using remoting, 276

assemblies containing or using serialization, 271

assemblies using platform invoke calls, 37

assemblies using reflection, 40-41 , 266

assemblies using remoting, 276

assemblies using satellite DLLs, 37

assemblies using serialization, 271

managed C++ assemblies, 37

managed resource names, 37

mixed code assemblies, 37

multi-module assemblies, 37-38

strong named assemblies, 38-39

using custom attributes, 41-43

with ASP.NET, 281

with reflection, 266

with remoting, 276

with serialization, 271

Obfuscation Attribute Feature Map, 189-190

obfuscation, 97-98 , 264-265 , 187 , 195 , 195 , 195-196 , 210-211

control flow, 30-31 , 195 , 195 , 195-196 , 196

incremental, 264-265 , 34

Dotfuscator User's Guide 313

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

smart, 35-37 , 210-211

XML Serialization, 97-98

ObfuscationAttribute feature map, 189-190

in Dotfuscator, 189-190

ObfuscationAttribute, 41-43 , 187

Observing and Understanding Obfuscated Output, 25-28

options tab

rename options tab, 93-94

Output Directory, 189

Output Mapping File, 193-194

output tab, 69-70

Overload Induction, 29-30 , 191-193

enhanced, 94-95 , 191-193

P/Invoke Methods, 37

Packaging

ClickOnce Inputs, 56-57

Directory Inputs, 55-56

Silverlight Inputs, 56

Windows Store Inputs, 57-58

Performance Attributes, 153

PerformanceProbeAttribute, 153 , 252-253

platform invoke, 37

post build event, 43-44

in Dotfuscator, 43-44

pre build event, 43-44

in Dotfuscator, 43-44

Dotfuscator User's Guide 314

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

PreEmptive Analytics , 129-130

PreEmptive Analytics Custom Attributes , 145

PreEmptive Analytics Section , 208-209

PreEmptive Analytics, 32 , 48-49 , 135 , 135-136 , 136-137 , 130 , 132-133 , 130-132 , 137 , 137-138 , 138-141
, 141-142 , 145 , 150 , 150-151 , 151 , 145-146 , 146-149 , 149-150 , 153 , 153-154 , 154-155 , 142-145 , 156
, 156-157 , 157 , 157 , 157-164 , 227 , 227 , 187 , 208-209

application environment tracking , 153-154

application performance tracking , 153

assembly attributes , 150 , 150-151 , 151 , 145-146

configuring , 142-145

custom attributes , 145 , 227

debugging , 156

Dotfuscator configuration , 208-209

entry point , 146-149

example , 157-164

exception notification , 137-138

Exception Tracking Attributes , 151

ExceptionTrack attribute , 137

exit method , 149-150

expiration detection , 130-132

expiration notification , 132-133 , 130-132

extended keys , 154-155

feature attribute , 151-153

InsertShelfLife attribute , 132-133 , 130-132

InsertTamperCheck attribute , 135-136

message tracing , 156-157 , 157 , 157

overview , 141-142

Dotfuscator User's Guide 315

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

PerformanceProbe attribute , 153

PreEmptive.Attributes , 227

setup attribute , 146-149

Shelf Life Activation Key , 130

Shelf Life and Sign of Life attributes , 150-151

Shelf Life token overview , 129-130

SLAK , 130

SystemProfile attribute , 153-154

tamper detection , 135 , 135-136

tamper notification , 135 , 135-136 , 150

teardown attribute , 149-150

testing , 156 , 156-157 , 157 , 157

user defined data , 154-155

user-specified report , 138-141

PreEmptive.Attributes namespace, 227 , 227

custom attribute reference, 227

PreEmptive.Attributes, 253-254 , 227 , 227-228 , 228-229 , 229 , 236-240 , 240 , 240-246 , 246-247 , 247-252
, 252-253 , 254-260 , 260-261 , 261-262 , 262-263 , 263-264 , 230-235 , 235-236

ApplicationAttribute, 227-228

BinaryAttribute, 228-229

BusinessAttribute, 229

ExceptionTrack attribute, 230-235

ExceptionTypes, 235-236

FeatureAttribute, 236-240 , 240-246 , 246-247

FeatureEventTypes, 240

InjectionPoints, 253-254

Dotfuscator User's Guide 316

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

InsertShelfLifeAttribute, 240-246

InsertSignofLifeAttribute, 246-247

InsertTamperCheckAttribute, 247-252

PerformanceProbeAttribute, 252-253

SetupAttribute, 254-260

SinkElements, 260-261

SourceElements, 261-262

SystemProfileAttribute, 262-263

TeardownAttribute, 263-264

PreEmptive.SOs.Attributes , 227 , 227-228 , 263-264

prefix, 191-193

Dotfuscator renaming option, 191-193

premark editor, 110-111

PreMark Elements, 203-204

PreMark Options, 202-203

PreMark Section, 202

PreMark Task, 180-181

premark, 33 , 111 , 111-112 , 112 , 110-111 , 180-181 , 202 , 202-203 , 203-204

editor, 110-111

elements, 203-204

extracting, 112

in Dotfuscator, 33 , 111 , 111-112 , 112

MSBuild task, 180-181

options, 202-203

string, 111

watermark character map, 111-112

Dotfuscator User's Guide 317

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Preparing the ASP.NET Sample, 282

Previewing Rules, 126-127

Prime Assemblies, 108

prime assembly, 108

Project Configurations, 74-75

Project Properties, 77-88

Project Tree, 73-74

properties, 58-69 , 121-122 , 181 , 181-183

Property List and Properties, 181-183

Protection Concepts, 29

protection, 13-14

Pruning / Removal

Constant-Only Pruning, 106

Pruning, 32

Removal Report, 106

Understanding Include Triggers and Conditional Includes, 103

Pruning, 32 , 106 , 197

in Dotfuscator, 32

report, 106

size reduction, 32

in Dotfuscator, 32

quick start, 15 , 17-19 , 19-21 , 21-25

command line quick start, 19-21

standalone GUI quick start, 17-19

Visual Studio Integration quick start, 21-25

References

Dotfuscator User's Guide 318

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Advanced Topics, 265

Concurrent Builds, 266

dotfuscator_v2.3.dtd, 226-227

dotfuscatorMap_v1.1.dtd, 265

InjectionPoints, 253-254

References, 169

Side by Side Installs, 265-266

References, 169

Reflection and Dynamic Class Loading, 40-41

Reflection Sample Files, 266-267

Reflection Sample, 266

reflection, 40-41 , 266

obfuscating assemblies, 266

obfuscating sample application, 266

Registering and Activating Dotfuscator, 15-17

regular expressions, 116-117

deleting, 125

editing, 125

excluding custom attributes, 123-124

excluding events, 122-123

excluding fields, 120-121

excluding methods, 119-120

excluding namespaces, 117

excluding properties, 121-122

excluding supertypes, 124-125

excluding types, 117-119

Dotfuscator User's Guide 319

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

including custom attributes, 123-124

including events, 122-123

including fields, 120-121

including methods, 119-120

including namespaces, 117

including properties, 121-122

including supertypes, 124-125

including types, 117-119

previewing, 126-127

Remoting Sample Files, 276-277

Remoting Sample, 276

removal built-in rules tab, 105

removal editor, 102-103

removal options tab, 105-106

Removal Referenced Rules, 199

Removal Report, 106 , 199-200

Removal Section (i.e. Pruning), 197

removal tab, 102-103

Removal Trigger List, 198

removal, 32 , 106 , 102-103 , 103-104 , 105 , 105-106 , 197 , 197 , 198 , 198-199 , 199 , 199-200

built-in rules tab, 105

conditional includes list, 104-105 , 198-199

editor, 102-103

HTML report, 199-200

in Dotfuscator, 32 , 106

options tab, 105-106

Dotfuscator User's Guide 320

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

options, 197

referenced rules list, 199

report, 106 , 194 , 199-200

trigger list, 103-104 , 198

rename built-in rules tab, 99-100

rename exclude tab, 98-99

rename options tab, 93-94

Renaming

Class Renaming Options, 95-97

Debugging Obfuscated Code, 34-35

Enhanced Overload-Induction Method Renaming, 94-95

Incremental Obfuscation, 34

Introduce Explicit Method Overrides When Renaming, 98

Renaming Exclusions, 99

Renaming, 29-30

The Map File, 264-265

Using Lucidator, 166-168

XML Serialization and Renaming, 97-98

Renaming Exclusion List, 193

Renaming Exclusions, 99

Renaming Options, 191-193

Renaming Referenced Rules, 193

Renaming Scheme, 190-191

Renaming Section, 190

Renaming, 29-30 , 95-97 , 94-95 , 98 , 97-98 , 99 , 264-265 , 34 , 93 , 93-94 , 190 , 190-191 , 191-193 , 193 ,
193 , 194

Dotfuscator User's Guide 321

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

as obfuscation technique, 29-30

class, 95-97

editor, 93

exclusion list, 99 , 98-99 , 193

full class, 98

HTML report, 194

introduce explicit method overrides, 98

old behavior, 98

options, 95-97 , 94-95 , 98 , 93-94 , 191-193

referenced rules list, 193

scheme, 190-191

XML Serialization, 97-98

report info, 138-141

report information, 138-141

Running the ASP.NET Sample, 282-283

Running the Reflection Sample, 267-268

Running the Remoting Sample, 277-278

Running the Serialization Sample, 272

sample applications, 15 , 266 , 266 , 271 , 276 , 281

ASP .NET Sample, 266 , 281 , 281-282 , 282 , 282 , 282-283 , 283-284 , 284-285 , 285-286 , 286

obfuscating, 266

with ASP.NET, 281

with reflection, 266

with remoting, 276

with serialization, 271

Reflection Sample, 266 , 266 , 266-267 , 267 , 267-268 , 268-269 , 269-271 , 271

Dotfuscator User's Guide 322

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Remoting Sample, 266 , 276 , 276-277 , 277 , 277-278 , 278-280 , 280-281 , 281

Serialization Sample, 266 , 271 , 271 , 271-272 , 272 , 272-273 , 273-276 , 276

Samples

ASP.NET Sample Files, 281-282

ASP.NET Sample, 281

Building the ASP.NET Sample, 282

Building the Reflection Sample, 267

Building the Remoting Sample, 277

Building the Serialization Sample, 271-272

Configuring the ASP.NET Sample with the Graphical User Interface, 285-286

Configuring the Reflection Sample with the Graphical User Interface, 269-271

Configuring the Remoting Sample with the Graphical User Interface, 280-281

Configuring the Serialization Sample with the Graphical User Interface, 273-276

Dotfuscating the ASP.NET Output, 284-285

Dotfuscating the Reflection Output, 268-269

Dotfuscating the Remoting Output, 278-280

Dotfuscating the Serialization Output, 272-273

Examining the ASP.NET Sample Code, 283-284

Preparing the ASP.NET Sample, 282

Reflection Sample Files, 266-267

Reflection Sample, 266

Remoting Sample Files, 276-277

Remoting Sample, 276

Running the ASP.NET Sample, 282-283

Running the Reflection Sample, 267-268

Running the Remoting Sample, 277-278

Dotfuscator User's Guide 323

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Running the Serialization Sample, 272

Samples, 266

Serialization Sample Files, 271

Serialization Sample, 271

Summary of the ASP.NET Sample, 286

Summary of the Reflection Sample, 271

Summary of the Remoting Sample, 281

Summary of the Serialization Sample, 276

Samples, 266

satellite DLLs, 37

Saving a Configuration File from the Command Line, 177-178

Selecting By Custom Attribute, 123-124

Selecting By Event, 122-123

Selecting By Field, 120-121

Selecting By Method, 119-120

Selecting By Namespace, 117

Selecting By Property, 121-122

Selecting By Supertype, 124-125

Selecting By Type, 117-119

Selecting Individual Elements, 113-116

Sending User Defined Data with Extended Keys, 154-155

Serialization Sample Files, 271

Serialization Sample, 271

serialization, 271

Set User Preferences, 92-93 , 71-72

Setting Entry Points, 108-109

Dotfuscator User's Guide 324

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

setup tab, 58-69

SetupAttribute, 146-149 , 254-260

Shelf Life

Expiration and Warning Actions, 130-132

Expiration and Warning Reporting, 132-133

Shelf Life Activation Key Overview, 130

Shelf Life Token Overview, 129-130

Shelf Life, 32-33

Shelf Life Activation Key Overview, 130

Shelf Life and Sign of Life Attributes, 150-151 , 240-246 , 246-247

Shelf Life Token Overview, 129-130

Shelf Life, 32-33 , 130 , 129-130 , 132-133 , 130-132 , 133-134

Activation Key, 130

expiration detection, 130-132

expiration notification, 130-132

generate shelf life expiration token, 133-134

in Dotfuscator, 32-33

InsertShelfLife attribute, 132-133 , 130-132

notification, 132-133 , 130-132

SLAK, 130

token, 129-130

Side by Side Installs, 265-266

Signing Section, 204-205

Signing, 39-40 , 77-88

Silverlight Inputs, 56

Simulating Tampering, 136-137

Dotfuscator User's Guide 325

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

SinkElements, 260-261

SLAK, 130

Smart Obfuscation, 35-37 , 210-211

SmartObfuscation Section, 210-211

sn.exe, 44-45

using with Dotfuscator, 44-45

Solution Explorer and the Dotfuscator Project Tree, 73-74

Solution Explorer, 73-74

SourceElements, 261-262

spec list, 116-117 , 117

stack trace decoder, 34-35

Stack Trace Decoding Tool, 91-92

Standalone Graphical User Interface, 49-50

projects, 50-52

standalone GUI quick start, 15 , 17-19

String Encryption

String Encryption, 31-32

string encryption editor, 102

string encryption include tab, 102

String Encryption Inclusion List, 196-197

String Encryption Options, 196

String Encryption Section, 196

String Encryption, 31-32 , 102 , 102 , 196 , 196 , 196-197

as obfuscation technique, 31-32

editor, 102

include tab, 102

Dotfuscator User's Guide 326

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

inclusion list, 102 , 196-197

options, 196

stripOAs, 187

strong named assemblies, 38-39

Summary of the ASP.NET Sample, 286

Summary of the Reflection Sample, 271

Summary of the Remoting Sample, 281

Summary of the Serialization Sample, 276

supertypes, 124-125

Supplementing or Overriding a Configuration File from the Command Line, 173-177

SuppressIldasmAttribute Global Option, 184

SystemProfileAttribute, 153-154 , 262-263

Tamper

Simulating Tampering, 136-137

Tamper Actions, 135-136

Tamper Detection and Defense, 32

Tamper Notification, 48-49 , 134-135

Tamper Reporting, 135

Tamper Actions, 135-136

Tamper Detection and Defense, 32

Tamper Detection, 32 , 48-49 , 135 , 135-136 , 136-137 , 150 , 156-157 , 157 , 157 , 227 , 208-209

custom attributes reference, 227

InsertTamperCheck attribute, 135

message tracing, 156-157 , 157 , 157

testing, 136-137 , 156-157

tamper notification attribute, 150

Dotfuscator User's Guide 327

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Tamper Notification Attributes, 150

Tamper Notification, 32 , 48-49 , 135 , 135-136 , 136-137 , 134-135 , 150 , 208-209

in Dotfuscator, 32

Notification, 48-49 , 135-136

overview, 48-49

Tamper Reporting, 135

TeardownAttribute, 149-150 , 263-264

Temp Directory, 189

Testing and Debugging Applications with Application Analytics, 156

The Built-In Rules Tab, 105

The Conditional Includes Tab, 104-105

The Control Flow Editor, 100

The Control Flow Exclude Tab, 101-102

The Control Flow Options Tab, 100-101

The Help Menu, 92 , 72

The Include Triggers Tab, 103-104

The Linking Editor, 107

The Map File, 264-265

The Options Tab, 105-106

The Output Tab, 69-70

The PreMark Editor, 110-111

The Removal Editor, 102-103

The Rename Built-In Rules Tab, 99-100

The Rename Exclude Tab, 98-99

The Rename Options Tab, 93-94

The Renaming Editor, 93

Dotfuscator User's Guide 328

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

The Rules Editing Interface, 112-113

The Settings Tab, 58-69

The Standalone GUI, 49-50

The String Encryption Editor, 102

The String Encryption Include Tab, 102

The View Menu, 91-92

The Visual Studio Interface, 72

timestamp, 58-69

Transform XAML By Assembly, 188

transform xaml, 188

trigger files, 75-77

trigger list, 198

type, 117-119

selecting by, 117-119

Understanding Include Triggers and Conditional Includes, 103

Understanding Instrumentation with Dotfuscator, 45-46

Understanding Obfuscation with Dotfuscator, 28-29

unprintable, 190-191

Dotfuscator renaming scheme, 190-191

updates, 92 , 72

upperalpha, 190-191

Dotfuscator renaming scheme, 190-191

User Defined Assembly Load Path, 188-189

in Dotfuscator, 188-189

user preferences, 92-93 , 71-72

user-specified report, 138-141

Dotfuscator User's Guide 329

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Using Declarative Obfuscation with Rules, 125-126

Using Lucidator, 166-168

Verbose, Quiet, and Investigate Global Options, 183-184

version, 181

attribute, 181 , 181

View menu, 91-92 , 70-71

Viewing Project Files and Reports, 70-71

Visual Studio Integrated UI Quick Start, 21-25

Visual Studio Integration quick start, 21-25

Visual Studio Integration, 21-25 , 72 , 73 , 73-74 , 74-75 , 75 , 77-88 , 88-90 , 90-91 , 91 , 91-92 , 92 , 92-93
, 52-55

building, 91

Creating a Dotfuscator Project, 73

Deploying a project, 75

Dotfuscator, 72

editors, 90-91

Help menu, 92

Input Assemblies, 52-55

input assembly properties, 88-90

Project configurations, 74-75

project properties, 77-88

Project Tree, 73-74

quick start, 21-25

set user preferences, 92-93

View menu, 91-92

viewing reports, 91-92

Dotfuscator User's Guide 330

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

Watching Messages, 157

watermark extraction, 180-181

MSBuild task, 180-181

Watermark String Length, 111

Watermarking

Character Maps, 111-112

Extracting a Watermark, 112

Watermark String Length, 111

Watermarking, 33

Watermarking, 33 , 111 , 111-112 , 112 , 202 , 202-203 , 203-204

character map, 111-112

extracting, 112

in Dotfuscator, 33 , 111 , 111-112 , 112

watermark string, 111

Windows Store Inputs, 57-58

Working with Inputs, 75-77 , 52-55

Working with Projects, 50-52

XML Serialization and Renaming, 97-98

Dotfuscator User's Guide 331

© 2014 PreEmptive Solutions, LLC. All Rights Reserved.

www.preemptive.com

	Table of Contents
	Dotfuscator
	Introduction
	Dotfuscator Editions

	Getting Started
	Registering and Activating Dotfuscator
	Standalone GUI Quick Start
	Command Line Quick Start
	Visual Studio Integrated UI Quick Start
	Observing and Understanding Obfuscated Output

	Understanding Obfuscation with Dotfuscator
	Protection Concepts
	Renaming
	Control Flow
	String Encryption
	Pruning
	Tamper Detection and Defense
	Shelf Life
	Watermarking

	Building and Debugging Obfuscated Applications
	Linking
	Incremental Obfuscation
	Debugging Obfuscated Code

	Advanced Topics
	Smart Obfuscation
	P/Invoke Methods
	Managed C++ and IJW (It Just Works) Thunking
	Dotfuscating Assemblies with Managed Resources
	Dotfuscating Assemblies with Satellite DLLs
	Dotfuscating Multi-module Assemblies
	Dotfuscating Strong Named Assemblies
	Authenticode Signing Assemblies
	Dotfuscating 64-Bit Assemblies
	Reflection and Dynamic Class Loading
	Declarative Obfuscation using Custom Attributes
	Build Events
	Friend Assemblies
	Finding External Tools

	Understanding Instrumentation with Dotfuscator
	Instrumentation Injection
	Exception Tracking
	Tamper Notification

	Configuring Dotfuscator via the GUI
	The Standalone GUI
	Working with Projects
	Working with Inputs
	Directory Inputs
	Silverlight Inputs
	ClickOnce Inputs
	Windows Store Inputs

	The Settings Tab
	Configuring
	Building the Project
	The Output Tab

	Viewing Project Files and Reports
	Set User Preferences
	The Help Menu

	The Visual Studio Interface
	Creating a Dotfuscator Project
	Solution Explorer and the Dotfuscator Project Tree
	Project Configurations
	Deploying a Dotfuscator Project
	Working with Inputs
	Project Properties
	Input Assembly Properties
	Input Package Properties
	Configuring
	Building the Project
	The View Menu
	The Help Menu
	Set User Preferences

	The Renaming Editor
	The Rename Options Tab
	Enhanced Overload-Induction Method Renaming
	Class Renaming Options
	XML Serialization and Renaming
	Introduce Explicit Method Overrides When Renaming

	The Rename Exclude Tab
	Renaming Exclusions

	The Rename Built-In Rules Tab

	The Control Flow Editor
	The Control Flow Options Tab
	The Control Flow Exclude Tab

	The String Encryption Editor
	The String Encryption Include Tab

	The Removal Editor
	Understanding Include Triggers and Conditional Includes
	The Include Triggers Tab
	The Conditional Includes Tab
	The Built-In Rules Tab
	The Options Tab
	Constant-Only Pruning

	Removal Report

	The Linking Editor
	Input Assemblies and Linked Assemblies
	Prime Assemblies
	Name Mangling

	Setting Entry Points
	Entry Points

	The PreMark Editor
	Watermark String Length
	Character Maps
	Extracting a Watermark

	The Rules Editing Interface
	Selecting Individual Elements
	Creating Custom Rules
	Selecting By Namespace
	Selecting By Type
	Selecting By Method
	Selecting By Field
	Selecting By Property
	Selecting By Event
	Selecting By Custom Attribute
	Selecting By Supertype

	Editing and Deleting Rules
	Using Declarative Obfuscation with Rules
	Previewing Rules

	Instrumentation (Tamper, Shelf Life, Exception, Analytics)
	Shelf Life Token Overview
	Shelf Life Activation Key Overview
	Expiration and Warning Actions
	Expiration and Warning Reporting
	Generate New Shelf Life Token

	Tamper Notification
	Tamper Reporting
	Tamper Actions
	Simulating Tampering

	Exception Tracking
	Exception Reporting
	Exception Actions
	Collecting User-specified Exception Report Information

	PreEmptive Analytics
	Configuring and Running Dotfuscator with Application Analytics
	PreEmptive Analytics Custom Attributes
	Assembly Level Attributes
	Entry Point Attributes
	Exit Point Attributes
	Tamper Notification Attributes
	Shelf Life and Sign of Life Attributes
	Exception Tracking Attributes
	Feature Usage Attributes
	Performance Attributes
	Environment Attributes
	Sending User Defined Data with Extended Keys
	Automatically Sending Method Parameters as Extended Keys

	Testing and Debugging Applications with Application Analytics
	Configuring Message Tracing
	Watching Messages
	Downloading Message Data

	Example PreEmptive Analytics Enabled Application

	Decoding Obfuscated Stack Traces
	Using Lucidator
	Customer Feedback Options

	References
	Command Line Interface Reference
	Command Line Option Summary
	Supplementing or Overriding a Configuration File from the Command Line
	Saving a Configuration File from the Command Line
	Launching the Graphical User Interface from the Command Line

	MSBuild Task Reference
	Dotfuscate Task
	PreMark Task

	Configuration File Reference
	Version
	Property List and Properties
	Global Section
	Library Global Option
	Verbose, Quiet, and Investigate Global Options
	SuppressIldasmAttribute Global Option
	Debug Global Option
	NoDotfuscatorAttribute Global Option

	Input Assembly List
	Library Mode By Assembly
	Declarative Obfuscation By Assembly
	Instrumentation Processing By Assembly
	Transform XAML By Assembly

	User Defined Assembly Load Path
	Output Directory
	Temp Directory
	Obfuscation Attribute Feature Map
	Renaming Section
	Renaming Scheme
	Renaming Options
	Renaming Exclusion List
	Renaming Referenced Rules
	Output Mapping File
	HTML Renaming Report
	Input Mapping File

	Control Flow Obfuscation Section
	Control Flow Obfuscation Level
	Control Flow Obfuscation Options
	Control Flow Exclusion List

	String Encryption Section
	String Encryption Options
	String Encryption Inclusion List

	Removal Section (i.e. Pruning)
	Disable Removal Option
	ConstOnly Option
	Removal Trigger List
	Conditional Includes List
	Removal Referenced Rules
	Removal Report

	Linking Section
	Disable Linking Option
	Linked Assemblies

	PreMark Section
	PreMark Options
	PreMark Elements

	Signing Section
	Digital Signing Section
	EventList Section
	PreEmptive Analytics Section
	Extended Attributes Section
	SmartObfuscation Section
	A Note about XML Configuration Files
	Custom Rules Reference
	Exclusion Rules
	Excluding Namespaces
	Excluding Types
	Excluding Methods
	Excluding Fields
	Excluding Properties
	Excluding Events
	Excluding By Custom Attribute
	Excluding By Supertype
	Excluding Assemblies
	Excluding Modules

	Inclusion Rules
	Including Namespaces
	Including Types
	Including Methods
	Including Fields
	Including Properties
	Including Events
	Including By Custom Attribute
	Including By Supertype
	Including Assemblies
	Including Modules

	dotfuscator_v2.3.dtd

	Custom Attribute Reference
	PreEmptive.Attributes
	ApplicationAttribute
	BinaryAttribute
	BusinessAttribute
	ExceptionTrackAttribute
	ExceptionTypes

	FeatureAttribute
	FeatureEventTypes

	InsertShelfLifeAttribute
	InsertSignofLifeAttribute
	InsertTamperCheckAttribute
	PerformanceProbeAttribute
	InjectionPoints

	SetupAttribute
	SinkElements
	SourceElements
	SystemProfileAttribute
	TeardownAttribute

	The Map File
	dotfuscatorMap_v1.1.dtd

	Advanced Topics
	Side by Side Installs
	Concurrent Builds

	Samples
	Reflection Sample
	Reflection Sample Files
	Building the Reflection Sample
	Running the Reflection Sample
	Dotfuscating the Reflection Output
	Configuring the Reflection Sample with the Graphical User Interface
	Summary of the Reflection Sample

	Serialization Sample
	Serialization Sample Files
	Building the Serialization Sample
	Running the Serialization Sample
	Dotfuscating the Serialization Output
	Configuring the Serialization Sample with the Graphical User Interface
	Summary of the Serialization Sample

	Remoting Sample
	Remoting Sample Files
	Building the Remoting Sample
	Running the Remoting Sample
	Dotfuscating the Remoting Output
	Configuring the Remoting Sample with the Graphical User Interface
	Summary of the Remoting Sample

	ASP.NET Sample
	ASP.NET Sample Files
	Preparing the ASP.NET Sample
	Building the ASP.NET Sample
	Running the ASP.NET Sample
	Examining the ASP.NET Sample Code
	Dotfuscating the ASP.NET Output
	Configuring the ASP.NET Sample with the Graphical User Interface
	Summary of the ASP.NET Sample

	Index

