
PREEMPTIVE SOLUTIONS

DASHO

User’s Guide

Version

7.2

© 1998-2014 by PreEmptive Solutions, LLC
All rights reserved.

Manual Version 7.2-01172014
www.preemptive.com

TRADEMARKS

DashO, Overload-Induction, the PreEmptive Solutions logo, and the DashO logo are
trademarks of PreEmptive Solutions, LLC

Java™ is a trademark of Oracle, Inc.

.NET™ is a trademark of Microsoft, Inc.

All other trademarks are property of their respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD CONTAIN TYPOGRAPHIC ERRORS AND/OR
TECHNICAL INACCURACIES. UPDATES AND MODIFICATIONS MAY BE MADE
TO THIS DOCUMENT AND/OR SUPPORTING SOFTWARE AT ANY TIME.

PreEmptive Solutions, LLC has intellectual property rights relating to technology
embodied in this product. In particular, and without limitation, these intellectual
property rights may include one or more U.S. patents or pending patent applications
in the U.S. and/or other countries.

This product is distributed under licenses restricting its use, copying, distribution,
and decompilation. No part of this product may be reproduced in any form by any
means without prior written authorization of PreEmptive Solutions, LLC.

http://www.preemptive.com/

D A S H O ™ U S E R ’ S G U I D E

2 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Contents

Contents.. 2

Introduction... 5

Why Obfuscate? .. 5

Goal of Obfuscation .. 5

DashO Features .. 5

Getting Started... 8

Launching the DashO User Interface... 8

Registering DashO .. 9

DashO FAQ .. 9

Selecting a Project Type .. 10

New Project Wizard .. 11

Projects using the Spring Framework .. 21

Android Quick Start ... 23

Prerequisites .. 23

Stage your Android project for DashO ... 23

Create a DashO project with the wizard .. 23

Configure obfuscation and instrumentation with the DashO GUI.................... 24

Make a full build with Ant ... 24

Install your obfuscated APK to an emulator .. 25

Make and sign a release build .. 25

Run on another machine .. 25

User Interface Reference ... 26

The Main User Interface Window ... 26

Advanced Mode User Interface .. 29

Quick Jar User Interface .. 81

User Preferences .. 90

Decoding Stack Traces .. 93

Generating Shelf Life Tokens .. 95

Using the Command Line Interface .. 96

DashO Command Line ... 96

Watermarking PreMark Tool.. 98

Advanced Topics ...100

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 3

Overload-Induction Method Renaming ..100

Dynamic Class Loading..101

Serialization ..103

PreEmptive Analytics ..104

Overview ...104

Custom Annotations..104

Gathering Performance Information ...107

Gathering Environment Information ...107

Sending User Defined Data ...108

Download Message Data ...108

Tamper Checking and Response ...109

Tamper Checking ..109

Tamper Response...110

Shelf Life ...112

Activation Key ..112

Shelf Life Tokens...112

Expiration Check ...112

Exception Reporting..117

Application and Thread-level Reporting ..117

Method-level Reporting ..118

Getting Version Information ...120

Using Custom Encryption ..121

Encryption...121

Decryption ..121

Sample Applications ...123

Project File Reference ..124

D A S H O ™ U S E R ’ S G U I D E

4 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

<dasho> ..124

<propertylist> Section ...124

<global> Section ..128

<inputpath> Section ..133

<classpath> Section..134

<entrypoints> Section ...136

<report> Section ..143

<output> Section ...145

<removal> Section ..148

<methodCallRemoval> Section ..151

<renaming> Section ..153

<optimization> Section ...159

<controlflow> Section ...159

<stringencrypt> Section..160

<make-synthetic> Section..162

<premark> Section ..164

<includenonclassfiles> Section ...165

<preverifier> Section...167

<signjar> Section...167

<instrumentation> Section ...168

<includelist> and <excludelist> Rules ..176

Names: Literals, Patterns, and Regular Expressions180

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 5

Introduction

DashO is a Java obfuscator, compactor, optimizer, and watermarker. This section
provides an overview of the benefits of using DashO.

Why Obfuscate?

Java uses expressive file syntax for delivery of executable code. Being higher-level
than binary machine code, class files contain identifiers metadata that makes source
code recovery possible. Attackers can use a decompiler to reverse engineer code,
exposing software licensing code, copy protection mechanisms, or proprietary
business logic.

Obfuscation is a technique that provides seamless renaming of symbols in
applications as well as other tricks to foil decompilers. Properly applied obfuscation
increases the protection against decompilation by orders of magnitude, while leaving
the application intact.

Goal of Obfuscation
The goal of obfuscation is to create confusion. As the confusion builds, the ability to
recover source from class files deteriorates. This says nothing about altering the
executable logic - only representing it incomprehensibly.

An obfuscator works at the byte code level to confuse a human interpreter and break
decompilers while preserving the executable logic. As a result, attempts to reverse-
engineer the instructions fail or produces code that fails to compile.

DashO Features

PreEmptive Solutions has been protecting and improving intermediate compiled
software since 1996, beginning with its DashO tools for Java. Its products for both
Java and .NET have enjoyed market-success due to their power, versatility, and
patented features.

Pruning

Starting with entry points into the application DashO determines the classes,
methods, and fields that an application uses and creates a package of just those
elements. This extends to third-party libraries allowing you to ship only the pieces
that your application uses.

D A S H O ™ U S E R ’ S G U I D E

6 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Renaming

DashO uses Overload Induction™, a patented algorithm devised by PreEmptive
Solutions. Overload Induction will rename as many methods as possible to the same
name. The following example illustrates the technique.

First the original source code:

Example

private void calcPayroll(SpecialList employeeGroup) {

 while (employeeGroup.hasMore()) {

 employee = employeeGroup.getNext(true);

 employee.updateSalary();

 distributeCheck(employee);

 }

}

And now reverse-engineered source after Overload Induction:

Example

private void a(a b) {

 while (b.a()) {

 a = b.a(true);

 a.a();

 a(a);

 }

}

DashO also generates a name-mapping file so that obfuscated names can be
reapplied between successive releases. This allows patched files to integrate into
the previously deployed systems.

Control Flow Obfuscation

DashO works by destroying the code patterns that decompilers use to recreate
source code. The end result is code that is semantically equivalent to the original but
thwarts decompilers.

String Encryption

DashO encrypts strings in all or part of your application, providing a barrier against
attackers searching for specific strings in an application to locate logic for
registration or serial numbers.

Byte Code Optimization

Byte code optimizations can be performed on all or part of your application. DashO
performs algebraic identity, strength reduction, and other peephole optimizations.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 7

Watermarking

DashO can add watermarks to obfuscated jar files that can be used to track
unauthorized copies of software back to the source. Watermarking is used to
unobtrusively embed data such as unique customer identification numbers or
copyright information into an application without impacting its runtime behavior.

D A S H O ™ U S E R ’ S G U I D E

8 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Getting Started

Launching the DashO User Interface
Start the DashO user interface by running dashogui or dashogui.bat in the DashO
directory.

Note

In Windows 7® (and prior), you can start the DashO user interface by clicking Start

> All Programs > DashO 7.2 > DashO 7.2.
In Windows 8®, it will be located on your Start Screen and under DashO 7.2 on the
All Apps page.

The user interface is described in Advanced User Interface and Quick Jar User
Interface. After you have created a project using the interface you can run it from
there or from the command line.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 9

Registering DashO

The first time you use the product you will be prompted with a registration dialog that
will walk you through the process. Fill out the registration form using the serial
number provided via email upon purchase confirmation or approval of evaluation.
Required fields are highlighted until they have valid information entered.

If you use a proxy server to access the web you may have to enter that information
now. In general, DashO will pick up the proxy information from the operating system
and you can just click on Register.

After your registration is submitted, DashO requests you to participate in the
Customer Feedback Program. If you are evaluating DashO, then you are
automatically enrolled.

You will receive an email confirming your installation.

Note

Click Help > About DashO to locate your serial number if you need to contact our

Support Department. The PreEmptive Solutions Support Department can be
reached via phone at (216) 732-5895 ext. 3, or via email at

support@preemptive.com.

DashO FAQ
Frequently Asked Questions regarding DashO may be viewed online at
www.preemptive.com/products/dasho/FAQ.html.

mailto:support@preemptive.com
http://www.preemptive.com/products/dasho/FAQ.html

D A S H O ™ U S E R ’ S G U I D E

1 0 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Selecting a Project Type

PreEmptive Solutions has designed DashO to meet the needs in varying situations.
There are two principal modes for operating DashO.

1. Advanced (Entry Point) Mode User Interface is best for complex applications or
fine-grained control, and where pruning is desired.

2. Quick Jar Mode User Interface is ideal for simple standalone applications with a
main method, and where pruning is not required.

Following is a list of criteria to consider when deciding whether to use either the
Quick Jar or Advanced mode.

Criteria
Quick Jar Mode is appropriate
if all of the following are met

Advanced Mode is appropriate
if any of the following are met

Application
Components

Application or library that consists of
only jars. Limited use of reflection.

Application or library that contains jars and
directories of class files. Uses reflection-based
frameworks such as Spring or Hibernate.

Granularity of
Control

Coarse – obfuscations can be turned on
or off.

Fine – obfuscations can be turned on or off and
particular classes/methods/fields can be
excluded from a single obfuscation.

Pruning
All methods and fields should be
retained.

Unused methods and fields should be
removed.

Packaging
Obfuscated classes should retain their
original packaging

All obfuscated classes should be placed in a
single jar.

In Quick Jar mode, DashO checks to see if the manifest of each of the input jars
contains the Main-Class information. The class specified as the Main-Class in the
manifest is added as an entry point. If none of the input jars have a main class in the
manifest, then all classes within the input jars are added as entry points. The entry
point or entry points are used by DashO to analyze what classes are required in the
input and supporting jars.

Note

In Quick Jar mode, DashO does not remove any classes from the input jars. The
output jar has all the classes from all the input quick jars, and DashO may rename

these classes. Non-class files from the input jars are automatically included in the
output.

Both project types can be built from the graphical user interface or the command
line. DashO also provides tasks for Apache Ant and a plug-in for use with the
Eclipse IDE.

http://ant.apache.org/
http://www.eclipse.org/

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 11

New Project Wizard

The easiest way to create a DashO project is to use the New Project Wizard. The
wizard examines your application and determines the settings to obfuscate your
application. To start the wizard, go to File > New Project > Wizard.

The first step in using the wizard is to characterize your application. Select the type
that best describes your application.

Based on your selection the wizard will ask you a series of questions that are
specific to your application type. The following sections show you how to use the
wizard for each type of application.

Note

By default, the New Project Wizard will automatically launch on startup.

D A S H O ™ U S E R ’ S G U I D E

1 2 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Library Applications

When you select a library to be obfuscated the wizard will ask you for the location of
the jar or directory that contains the library.

The wizard will examine the library and determine dependencies that will be needed
at runtime or for obfuscation purposes. You can add additional jars as input to be
obfuscated or as runtime support jars. The missing classes list shows classes that
are referenced by your library.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 13

Next the wizard will ask about the entry points in the library. The wizard will show the
entire library as an entry point along with any special classes or methods that are
used as entry points.

Finally, the wizard asks where you want to save the resulting project file. If you
overwrite an existing project file the wizard will update the project file with your new
selections. It will update the Make Synthetic option, setting it to Only private
and package, but other obfuscation and PreEmptive Analytics settings are
preserved.

Note

When obfuscating a library, use a Make Synthetic option of Never, Only

private and package, or If not public. Choosing Always will prevent the

library from being properly exposed to your end users.

D A S H O ™ U S E R ’ S G U I D E

1 4 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Applications in a Jar

When you select an application jar to be obfuscated the wizard will ask you for the
location of the jar that contains the application.

The wizard will examine the application and determine dependencies that will be
needed at runtime or for obfuscation purposes. You can add additional jars as input
to be obfuscated or as runtime support jars. The missing classes list shows classes
that are referenced by your application.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 15

Next the wizard will ask about the entry points of the application. If the jar's manifest
included a Main-Class attribute it will be listed as an entry point. In addition, the
wizard will show the special classes or methods that could also be used as entry
points. DashO uses these entry points to determine unused items that will be pruned
from the obfuscated output. You can select as many entry points you wish to have
DashO follow, but should always select at least one.

Finally, the wizard asks where you want to save the resulting project file. If you
overwrite an existing project file the wizard will update the project file with your new
selections. Other obfuscation and PreEmptive Analytics settings are preserved.

D A S H O ™ U S E R ’ S G U I D E

1 6 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

WAR Files

When you select a WAR file to be obfuscated the wizard will ask you for the location
and name of the WAR to be obfuscated.

The wizard will examine the WAR file for classes and jars that are included in the
WAR. These items include the special locations in WEB-INF that are used by the web
container as well as jars that may be referenced by JNLP files. You can select which
items in the WAR file that you wish to obfuscate.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 17

In addition to the jar files that are stored in the WAR file, DashO needs the classes
that are part of the Servlet and JSP APIs. The wizard will look for these jars in well-
known locations and add them to the list of support jars that will not are not
obfuscated. If your application expects the web container to provide any other
classes shared amongst web application, such as the logging service log4j, you
need to add it to the list of jars.

Finally, the wizard asks for the directory where you want to save the wizard's output.
The wizard will create several files in addition to a project file:

 obfuscate.xml: An Ant script that opens the WAR file, runs the DashO project
file, and then re-assembles the WAR file.

 obfuscate.properties: A Java properties file read by obfuscate.xml. Use this file
to change location defaults.

The obfuscate.xml file can be executed by running Ant:

Example

ant -f obfuscate.xml

or by calling it from another Ant file:

Example

<ant antfile="obfuscate.xml"/>

http://logging.apache.org/log4j/index.html

D A S H O ™ U S E R ’ S G U I D E

1 8 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

It performs three tasks:

 It un-WARs the WAR file into a directory. The default directory is .unwar.

 It runs the Wizard generated project files against the contents of the .unwar
directory. Results are temporarily stored in the .obfus directory.

 It recreates the WAR with the obfuscated results into a new WAR file with
_dashoed added to the original file name.

Note

The default memory allocated to DashO processes is 192M. You can change this

and other defaults used in WAR file processing by editing obfuscate.properties.

If you overwrite an existing project file the wizard will update the project file with your
new selections. Other obfuscation and PreEmptive Analytics settings are preserved.

You will need to install DashO's Ant tasks to perform the obfuscation. See the
DashO's Ant Task documentation for details.

anttasks/show-install.html

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 19

Android Applications

When you select an Android application to be obfuscated the wizard will ask you for
the location of the Android project.

Prerequisites

● Android SDK Tools Revision 10 or later

● Apache Ant 1.8 or later
● DashO Ant Tasks installed - see the Ant task documentation for details.

The wizard considers a directory the location of an Android project if it contains an
AndroidManifest.xml and the build.xml file used by Apache Ant. If you created
your Android application using an IDE the build.xml may not exist. You can create
the required build.xml using the Android SDK and then compile your application:

android update project --path projectpath [--target

{targetID}]

ant debug

Running this in a directory that already contains source for an Android application
will not overwrite any of your files.

The wizard will examine the application and determine dependencies that will be
needed at runtime or for obfuscation purposes. You can add additional jars as input
to be obfuscated or as runtime support jars. If your Android application uses an add-
on target, like Google-APIs, those libraries will be added automatically as support
files. The missing classes list shows classes that are referenced by your application
but were not located.

http://developer.android.com/
anttasks/show-install.html

D A S H O ™ U S E R ’ S G U I D E

2 0 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

The wizard analyzes the AndroidManifest.xml, the resources, and the compiled
classes to determine the entry point of the application. For Android applications you
should use all the entry points suggested by the wizard.

The wizard will create/change several files:

 project.dox: This is the DashO configuration file, containing all the project-
specific settings. This is related directly to the source code of the project. It can
be manipulated using DashO’s user interface.

 build.xml: This is an Ant script that is created by the Android tools. The wizard
modifies this file to add specific build tasks. The modifications include a call to
dasho.xml. This is not project-specific, except that different versions of DashO
might make different modifications (as we add new features to DashO).

 dasho.xml: This is an Ant script that is referenced by the main build.xml. It
provides the obfuscation targets. It does not have project-specific data in it
(except for a reference to project.dox), but different versions of DashO create
different versions of this file (as we add new features to DashO).

 AntDroid.xml: This can be pulled into Eclipse to make it easier to run the Ant
scripts, which allows you to obfuscate from within Eclipse. It is generated once
by the Wizard, and then not modified. It is largely generic, except that it contains
the project name.

Note

You may notice a red ‘X’ by ${out.classes.dir} after clicking Finish. This is normal,

as you have not yet built the application with the newer scripts.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 21

Building the Project

Use DashO's user interface to configure the obfuscation and instrumentation. To
obfuscate the application you simply need to execute the obfuscate target before the
target that you use for building or deploying the application:

 ant obfuscate debug

 ant obfuscate release

 ant obfuscate debug install

An additional instrument target is also available in the Ant file for use with
PreEmptive Analytics. It is used in place of obfuscate above and executes the same
project file used for obfuscation but turns off all obfuscation transforms.

Note

The debug, release, install and other ant targets are defined by the android SDK
and may differ between SDKs.

DashO will rewrite the AndoidManifest.xml file to allow for the renaming of classes.
The generated ant script will automatically backup and restore the original manifest
file after the SDK’s packaging step. The files you will see are:

 AndroidManifest.xml – The Manifest file used by Android and its various
tools to describe the application. This file will be rewritten as part of the
DashO process and then restored after the packaging step.

 AndroidManifest_pre_ob.xml – This is the copy of the pre-obfuscated
version used to restore the original file when DashO finishes.

 AndroidManifest_ob.xml – This is the obfuscated version of the manifest,
which contains the contents of the AndroidManifest.xml in the packaged
application.

 Note

The ant script manages the files listed above. If the DashO GUI is used to
obfuscate the project, the AndroidManifest.xml file will not be returned to its

original state. It is not recommended to use the GUI to obfuscate Android projects.

Projects using the Spring Framework
Spring bean support in DashO is provided primarily by the Spring Bean special
class. It is configured with the class name (or name pattern) and optional entry
points (e.g. init, destroy, and factory methods). During processing, the property
methods (get*(), is*(), and set*(*)), public constructors, and configured entry points,
will be followed to determine unused methods. The class, configured entry points,
property methods and non-property methods can be configured to be renamed.

DashO will scan the Spring XML files during each build and will update any class
references in the XML if DashO has renamed the corresponding Java class. It will
update direct class references as well as class names listed in parameters or
argument types. It will also update bean property names and entry point method
names if DashO renamed them. Abstract beans (E.G. bean definitions without
classes) will also have related property names and method names updated as it is
assumed they are related to the renamed beans.

D A S H O ™ U S E R ’ S G U I D E

2 2 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

To get the most benefit out of DashO's Spring support, we suggest starting your
project by using the New Project Wizard, and then making individual adjustments to
the special classes as needed.

The New Project Wizard will identify Spring XML files, scan them for bean class
references and configure Spring Bean special classes. When the New Project
Wizard finds a bean definition in a Spring XML file, it:

 Creates a new Spring Bean special class for the identified class.
 Looks for configured init-method or destroy-method attributes in the

XML and adds them to the special class as entry points. If no init-method
or destroy-method attribute was found, it will check for default-init-
method or default-destroy-method attributes, respectively, and instead
adds them to the special class as entry points.

 Looks for a configured factory-method directly on the bean and adds it to
the special class as an entry point.

 Looks for configured lookup-method or replaced-method elements and
adds them to the special class as entry points.

 Looks for constant values referenced using util:constant static-
field or the
org.springframework.beans.factory.config.FieldRetrievingF

actoryBean bean.

Please take a look at the SpringBean sample project as it provides examples of
DashO’s support.

Note

If you use the factory-bean attribute, you will need to manually add the

corresponding factory-method as an entry point on the appropriate class.

If you use replaced-method functionality, you may need to specify the signature

using the arg-type elements so the correct method will be identified after

renaming.

If you use the FieldRetrievingFactoryBean the targetObject attribute is

not supported.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 23

Android Quick Start

This section will walk you through setting up an existing Android project to use
DashO.

Prerequisites

The machine that you will install DashO onto must also have Ant installed. During
the installation, make sure to install the Ant tasks component.

Information on installing the Ant tasks is available in DashO's Ant Task
documentation. It is basically two steps:

1. Optionally run antconfig to tell ant the location of DashO.
2. Run antinstall (with the path to the ant home directory).

You will need to have an Android project, which you can create either through
Eclipse or on the command line. If you create it in Eclipse you should still know the
physical location of the project. Eclipse knows where the Android SDK is located
and creates the appropriate references.

DashO will need to have access to the locations of the Android SDK and the Android
project. They don’t all have to physically be on the same machine as long as the file
system has access to them. If they are not all on the same machine, you can map
network drives to provide access.

You can make things a bit easier by making sure Ant and Android are available on
your system path, but this is not a requirement.

Stage your Android project for DashO

If you are not currently using the Android ant tools to build your application, you will
need to set them up. To stage your Android project for DashO, you’ll have to run the
Android update command and then run a build with Ant.

At the command line, run:

android update project --path <project path>

If Android is not on your system path, you need to provide the full path to
android.bat. For example:

C:\android\android-sdk\tools\android.bat

After running the update command, you should have a valid copy of build.xml in your
project folder. The command to run the build can either be ant debug or ant
release. It doesn’t matter, as long as the build completes successfully.

Create a DashO project with the wizard

The New Project Wizard may start automatically when you start DashO. If DashO is
already running, you can start the wizard from File New project Wizard.
Choose “An Android application” in the “Select Application Type” Wizard screen, and
then enter your Android project directory in the “Select Android Project” screen.

anttasks/show-install.html
anttasks/show-install.html

D A S H O ™ U S E R ’ S G U I D E

2 4 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

The Wizard will perform most of its work automatically. The Wizard will attempt to
discover references to support JARs automatically, but in some cases you may have
to add them manually. One of the Wizard screens gives you the opportunity to add
additional JARs. It will also allow you to change the version of android.jar (the main
Android API library), but under most circumstances you shouldn’t change this.

The Wizard saves a file called project.dox in the root of the Android project folder.
This file contains all of the DashO configurations for this project. It also creates a
dasho.xml and updates the build.xml allowing DashO to obfuscate the code. Quickly
test it by running ant obfuscate debug from the command prompt.

A full walkthrough of the wizard can be found in the Getting Started Android
Applications section.

Configure obfuscation and instrumentation with the DashO
GUI

Now that you have your staged Android project loaded into DashO, you can use the
DashO GUI to make the desired configurations. Remember to save your project,
which will update the project.dox file. To change the configuration settings later,
run DashO, open your project.dox file, make your changes, and save.

See the User Interface Reference section for a walkthrough of the DashO GUI

It is possible to test your configurations to see if they build correctly by building the
project within in the GUI. Follow these steps:

1. Backup the AndroidManifest.xml file
a. This file will be modified, but not restored by the GUI.
b. The Ant build handles restoring the original file.

2. Execute the project from the GUI.
a. Click “Yes” on the prompt warning about the AndroidManifest.xml file
b. Look for any errors in the output

3. Restore the AndroidManifest.xml.

Make a full build with Ant
To run a full build, navigate to the Android project folder on the command line and
run either ant obfuscate debug or ant obfuscate release. Any errors or warnings
will be output to the screen.

DashO does not work directly with the APK package. DashO takes in the Java class
files related to the project, alters them, and packages the output in an obfuscated.jar.
Then the ant script uses obfuscated.jar to create the classes.dex file which is
packaged inside of the Android APK.

If you are running on an emulator, you can just use debug mode. Debug builds do
not perform the signing which is necessary for the release build.

Note

When you run a debug build, DashO will attempt to keep the debug information in

the classes. You may see warnings like:

[obfuscate] Warning: Local Variables Tables removed from

com.myClass.myMethod due to control flow changes.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 25

When DashO applies control flow obfuscation, these optional tables are removed.

Install your obfuscated APK to an emulator

The ant build will create a folder called ant-bin which contains different versions of
the APK. The one you want is <project name>-debug.apk. Double check the
time stamp, but this should be the one which was just created by the Ant build.

With the emulator running, type adb install <project name>-debug.apk.
This will install the APK to the running emulator. You can then access the
application by using the emulator and navigating to the applications list. The
installed application will appear just like any other Android app installed on a device.

You can also run ant installd to install on an emulator.

Make and sign a release build

To make a release build, which is required for installing to a physical device, you
have to create a signing key and provide this information to Ant. There should be a
file called ant.properties in the Android project folder. The following information
needs to be in this file:

key.store=keystore

key.alias=alias

key.store.password=password

key.alias.password=password

Replace the values above with the appropriate strings for your environment. The
location of the keystore file should be the root of the Android folder. You can place it
anywhere in the file system if you provide the full path to ant.properties.

At this point running ant obfuscate release will pick up the signing information and
create the release version that can be deployed to Android devices.

Run on another machine

Copying the project from one machine to another and then running update project
may not work as the Android software will be in a different location and the
references may not be updated correctly. When you create the project, the paths to
the different parts of the Android SDK are coded into the configuration files and
copying the files does not update these paths.

Your best solution will be to prepare an environment ahead of time in such a way
that one build machine has access to the different tools mentioned above. If you
have already created your Android project or otherwise can’t create a new project
after having setup your environment, you may find that you need to edit the build.xml
or one or more of the *.properties files to reflect the correct locations. You will know
this when you get an error message that claims that something can’t be found
(typically build.xml or another xml file from the Android SDK location). If that
happens, note the location that the build is looking for, find the similar location in
your build environment (probably the same path, but a different drive letter) and
update the reference.

D A S H O ™ U S E R ’ S G U I D E

2 6 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

User Interface Reference

The Main User Interface Window
When DashO is launched, the user interface displays on the desktop. The default
view, shown below, is the Advanced Mode user interface Input panel.

The DashO user interface consists of five activity zones:

1 Menu Bar At the top, the familiar Menu Bar.
2 Toolbar Below the Menu Bar is the Toolbar containing icons of frequently accessed actions.

3 Navigation Tree Below the Toolbar and to the left of the Work Area is the Navigation Tree that
organizes the specification and command activities for the Project.

4 Work Area The Work Area consumes the most real estate in the main window. As the name
suggests, this is where work activity occurs.

5 Console At the bottom, a scrollable console pane is provided for viewing output.

From the DashO user interface you can select to use one of the user interfaces:

 A jar mode user interface to create and edit DashO projects using Quick Jar
entry points.

 An advanced user interface for the DashO projects with the traditional entry
points.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 27

Menu Bar

Menu
Item

Sub Menu Item Description

File New Project Create a new Advanced or Quick Jar project, or select the Wizard to have
DashO create a project for you.

Open Project Open an existing project.

Recent Projects Open, or see a list of, recently accessed projects.
Save Project Save a new or modified project.

Save Project As Save an existing or modified project with a different name and/or in a
different location.

Exit Exit and close DashO.

Project Build Project Obfuscate a project.
Cancel Only available when building or refreshing a project. Cancel enables you to

cancel a build or a reload.

Reload Class List Available when new classes are added to a project.
Convert Convert a Quick Jar project into an Advanced project.
View Project Only available when a project is saved after modification or creation.

Enables you to view an existing project as a text file.

View Report File Only available when a report is saved after modification or creation.
Enables you to view an existing report.

View Renaming
Report File

Only available when a renaming report file is saved after modification or
creation. Enables you to view an existing renaming report file.

Window Decode
Stack Trace

Recover the stack trace from an obfuscated program. See Decoding Stack
Traces.

Shelf Life Token Create a Shelf Life token that can be saved to a file. See Generate Shelf
Life Token.

User Preferences Select general and DashO Engine options. See User Preferences.

Help Help Instant access to DashO assistance.

Register Product Only available during the registration process. Enables users to register
their version of DashO.

Check for
Updates

Check to ensure you have the most recent version of DashO.

Customer
Feedback
Options

Participate in DashO’s anonymous customer feedback program.

About DashO Provides information about the installed copy of DashO.

Toolbar

Icon Icon Name Function
 New Project Click to create a new project using the project wizard.

 Open
Project

Click to open an existing project.

 Save Project Click to save a new or modified project

 Project Save
As

Click to save an existing or modified project with a different name and/or in a
different location.

 Reload
Class List

Click to refresh the class list when new sources are added to it.

 Build
Project

Click to obfuscate a project.

 Cancel Build Click to cancel an in-progress project build

 Help Click to access to this User Guide.

D A S H O ™ U S E R ’ S G U I D E

2 8 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Work Area

The content of the Work Area is dependent upon the item selected in the Navigation
Tree.

Note

The Work Area contains toggle buttons. The enables the user to increase the

size of the Work Area by collapsing the Console. The Console can be expanded by
clicking the .

Console

The console area contains two tabs:

 Console – Displays progress of project creation and build and provides a count

of errors, warnings, and informational message.

 Problems – Lists any informational, warning, error, and fatal messages

encountered during obfuscation.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 29

Advanced Mode User Interface

In this section, we describe how to use DashO's interface for advanced mode
projects. You can use the interface to create new projects or edit existing ones. The
resulting project can be saved and used later by the command line interface, Ant, or
you can obfuscate within the interface and view the results.

Input Section

The Input Section is used to configure the input to the project. This includes the
location of jars and directories of classes that will be processed and entry points into
these classes that are used to analyze the dynamic flow of the application.

D A S H O ™ U S E R ’ S G U I D E

3 0 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Input – Jars and Classes

The Input Section starts with the locations for the classes to be processed. DashO
can handle directories or classes, zip files, and jar files in the classpath. Entries may
be added by selecting them from the file system using the Add button. You can also
create an entry by using the New button and editing its name. After adding or
removing items from the input use the refresh class list item in the toolbar or from
the menu.

Note

Adding and removing entries will automatically refresh the class tree. However,

manually entered names do not automatically refresh. Please use the refresh
button when finished editing the name.

See the <inputpath> Section for more information regarding the creation of input
entries.

Input – Supporting Classpath

DashO needs access to classes in the Java runtime and to classes in third party
jars. The classes referenced here are needed for DashO’s analysis but are not
processed. Entries may be added by selecting them from the file system using the
Add button. You can also create an entry by using the New button and editing its
name.

By default the location of the Java runtime used by DashO is added to the path.
Projects that use J2ME or the Android API should not append the runtime jar to the

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 31

classpath. These projects require the runtime jar for these particular environments:
e.g., midpapi10.jar or Android.jar. You may also append or prepend the
environmental classpath to the provided entries.

See the <classpath> Section for more information regarding the creation of new
classpath entries.

D A S H O ™ U S E R ’ S G U I D E

3 2 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Input – Included Non-Class Files

The Input – Included Non-Class Files panel lets you specify the source for non-class
contents, such as images, property, or configuration files that need to be in the
application.

Directories, individual files, or jar files may be added to list by selecting an existing
file using Add button. You can also create an entry by using the New button and
editing its name. For directories and jars all non-class files are copied into DashO's
output. Directory entries can contain wildcard patterns using the * character to select
particular file types.

Non-class files inside directory, zip, and jar sources will be copied to the output
destination preserving their relative internal directories. Specified non-class files will
be copied to the output destination. See the <includenonclassfiles> section for
details.

Note

XML configuration files found when processing the non-class files may be updated

allowing class and method names to be changed.
If you are merging inputs and your inputs contain the non-class files you can either
turn on Auto Copy or reference them here. If you are not merging inputs DashO

will copy over all non-class files in your input jars automatically; but non-class files
that appear in input directories will not be copied. See Auto copy for details.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 33

D A S H O ™ U S E R ’ S G U I D E

3 4 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Input Options

This panel controls some basic options that DashO uses while analyzing the input
classes.

Ignore Missing Classes

DashO will attempt to analyze all classes that the application attempts to call. You
can instruct DashO to ignore these classes by selecting this option. Note that DashO
cannot skip classes and interfaces that the application extends or implements.

Ignore Missing Methods

DashO will attempt to locate concrete implementations of methods as part of its
analysis. Turning this option on lets DashO proceeded even if it cannot locate the
desired method. Use this option with caution.

Use Exit Behavior from DashO 6.x and Earlier

The DashO command line and ant tasks return the number of errors as the exit
code. Enabling this option will set DashO to use 0 as the exit code when there are
no fatal errors.

Halt on First Error

DashO produces errors, warnings, and informational messages while processing the
inputs. Turning this option on configures DashO to immediately stop processing
when it encounters an error.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 35

Bypass DashO Processing

Turning this option on configures DashO to not perform any processing. The inputs
will simply be copied to the output. This option is not supported when merging
inputs in the output.

Reflection Halts Build

DashO's analysis makes note of reflection usage in the application so that the
targets of reflection can be identified. Turn this option on when you are determining
what parts of the application use reflection.

Determine Reflected Classes

DashO can determine some targets of reflection and automatically add make sure
that these classes appear in the output. Note that this processing can increase the
build time.

Rename Reflected Classes

By default targets of reflection are not renamed. Use this option to allow these
classes to be renamed.

D A S H O ™ U S E R ’ S G U I D E

3 6 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Entry Points – Methods and Fields

Fields and methods are used to indicate entry points into the application. DashO's
analysis begins at these locations and is used to traverse the call graph of the
application. This allows DashO to prune unused classes and members. Methods
and fields that are used as entry points are non-renameable by default. The class
and/or member can be made renameable by right-clicking on the item to bring up its
properties, and checking Rename item.

See the Using the Graphical Rules Editing Interface section to compose rules that
define method and field based entry points.

Conditional Including

It is sometimes necessary to manually include class files into the project. If the
Class.forName() construct is used anywhere in the project, DashO will be unable to
determine all possible classes that might be needed. In this case, any classes that
will be referenced in the forName() construct must be manually included as entry
points. These classes should not be renameable. See Advanced Topics for more
details on forname detection.

Note

If no entry points are defined DashO will see if it can find entry points in the

Manifests of input jars. If none are found, it defaults to library mode where all public
and protected classes and members are used as entry points.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 37

Entry Points - Libraries

Jars or directories of classes can be used as a library entry point. DashO uses all
public members of the classes as non-renameable entry points. Optionally,
protected members can be added as non-renameable entry points.

Libraries may be added by selecting them from the file system using the Add button.
You can also create a library entry by using the New button and editing its name.
The names of library entries can contain property references.

See the section <library> Entry Point for details concerning library entry points.

Note

Jars or folders added as libraries do not need to be added to the input list. Libraries

are combined with the input list to determine the classes to be processed. When

adding or removing library entries you can use the refresh option from the toolbar
or menu to update the list of input classes.

D A S H O ™ U S E R ’ S G U I D E

3 8 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Entry Points - Special Classes

A special class entry point allows the specification of a class that contains the
implementation of interfaces or extensions of a class that define an entry point into
an application. These entry points are typically defined by frameworks for such
things as Spring, J2ME, or Applets. The names of these classes can be specified as
an exact match, a pattern, or a by a regular expressions.

By default special classes are non-renameable. The class, and in most cases its
members, can be made renameable by right-clicking on the item to edit its properties
and check the Rename Class or Rename Members checkbox.

Applets

For DashO, an applet is a class that directly or indirectly extends
java.applet.Applet. The applet's class can be made renameable, but the methods
defined by java.applet.Applet are not renameable. See the <applet> section for
details.

Servlets

For DashO a servlet is a class that directly or indirectly implements
javax.servlet.Servlet. The servlet’s class can be made renameable, but the
methods defined by java.applet.Servlet are not renameable. See the <servlet>
section for details.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 39

Enterprise JavaBeans - EJBs

Enterprise JavaBeans are server-side components written in Java that can be used
to write distributed object-oriented enterprise applications. For DashO's purposes an
EJB is any class that extends the interfaces defined in the javax.ejb package
including the bean's home and key classes. See the <ejb> section for details.

Midlet and iAppli

A Midlet is a Java class that runs on embedded devices using Java ME, CLDC, or
MIDP. The Midlet class should extend javax.microedition.midlet.Midlet directly
or indirectly. iAppli classes are similar but use the NTT DoCoMo’s iAppli framework
and extend com.nttdocomo.ui.IApplication either directly or indirectly. The midlet’s
and iappli’s classes can be made renameable, but the methods defined by
javax.microedition.midlet.Midlet or com.nttdocomo.ui.IApplication are not
renameable. See the <midlet> and <iappli> section for details.

Android

Android is used to identify classes from an Android application. These classes will
extend android.app.Application, android.app.Activity, android.app.Service,
android.content.BroadcastReceiver, or android.content.ContentProvider.
These are each specified in the AndroidManifest.xml as an application, activity,
service, receiver, or provider. See the <android> section for details.

SpringBean

SpringBean is used to identify classes used as Spring beans (these classes would
be referenced in your spring xml configuration files). There is a setting for
Additional Entry Points for non-property methods such as init-method and
destroy-method. Unlike other special classes, renaming members is split into
different categories:

 Rename Property Methods – Controls the renaming of property methods
and fields.

 Rename Entry Points – Controls the renaming of the Additional Entry
Points specified.

 Rename Other Members – Controls the renaming of all other methods and
fields.

See the <springbean> and Projects using the Spring Framework sections for
additional details.

Class public fields/methods

DashO uses all public fields and methods in the classes as entry points. The class
and its public members will not be renamed. See the <publics> section for details.

Class all fields/methods

DashO uses all fields and methods in the classes as entry points. The class and all
its members will not be renamed. Specifying classes in this manner performs an
unconditional include of the class. See the <unconditional> Entry Point section for
details.

D A S H O ™ U S E R ’ S G U I D E

4 0 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Options - User Properties

The User Properties panel lets you create and assign values to properties that can
be referenced in the project. This can allow you to create a project that acts as a
template. Properties may be defined in the terms of other properties, manipulate the
value of other properties, or provide default values. The value of a property may be
specified using one or more property references including to references to
environment variables. These property references can include default values,
indirection, or substitution syntax. See Property References for details. Recursive
property definitions are not allowed.

See the <propertylist> section for information about using properties in your project.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 41

Removal – Options

The Removal Options panel control which what happens to unused classes and
members in the input and the removal of metadata.

Unused Classes

This controls the handling of unused classes. Options are to remove all unused
class, only those that are not public, or to perform no removal at all. See the section
on <removal> for details.

Unused Members

This controls the handling of unused methods and fields. Options are to remove all
unused members, only those that are not public, or to perform no removal at all. See
the section on <removal> for details.

Debug Information

This controls the removal of debugging information inserted by the compiler. Most
information is for use by debuggers, but the most useful to retain are line numbers
and the source file. To generate a stack trace with line number these two should be
retained. See <debug> Section for details.

Note

Field names in Local Variables and Local Variable Types are not renamed.

Leaving these attributes in a production release may compromise the obfuscation.

D A S H O ™ U S E R ’ S G U I D E

4 2 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Attributes

The Java compiler generates additional meta data for classes and their members
and stores that information in attributes in the class files. Some of this information is
required when for the compiler when you compile against a library or by applications
using reflection. You can use these settings to selectively remove information that
your application does not require at runtime to reduce the size of your class files.
See <attributes> Section for details.

Removal – Exclude

The Removal Exclude panel lets you compose rules that exclude classes and/or
their methods and fields from renaming. Individual methods, fields, classes, or entire
packages may be excluded.

You can create rules that exclude individual or groups of classes or even entire
packages using regular expressions. See Graphical Rules Editing Interface for
details.

Note

Classes referenced here will still be removed if referenced in the Classes section.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 43

Removal – Classes

If your inputs contain classes that you do not want to appear in the resulting output,
such as unit tests or samples, you can have DashO remove them. Classes matched
by these rules will not appear in DashO’s output. If any other input classes reference
them, they will be treated as if they were support classes.

You can create rules that match individual or groups of classes or even entire
packages using regular expressions. See Graphical Rules Editing Interface for
details.

Note

Classes referenced here, will be removed even if referenced in the Exclude section
as well.

D A S H O ™ U S E R ’ S G U I D E

4 4 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Removal – Method Calls

If your inputs contain calls to method you do not want to exist in the resulting output,
such as logging or console output, you can allow DashO to remove them. Calls to
the methods specified here will be removed from all input classes. Only calls to
methods which return ‘void’ can be removed. The methods themselves are not
removed, only the calls to those methods are removed.

Regular expressions are not supported in the class names, method names or
signatures. However an entry of ** for the class name will match the method in all
classes.

Note

If you use ‘**’ for a class name, you must make sure to add a similar rule for those

methods to be excluded from renaming.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 45

Obfuscation - Options

The Obfuscation Options panel controls the basic obfuscation setting for your
project. Other panels under obfuscation allow you to change the specifics of each
action and applying the obfuscation technique to all or part of your application.

Control Flow

Enables or disables control flow obfuscation globally. You can control the portions
of the application to which control flow is applied by using include and exclude rules.
If you do not specify any rules then all methods will have control flow applied.

Renaming

Enables or disables renaming of classes, methods, and fields globally. You can
control the portions of the application to which renaming is applied by using exclude
rules as well as controlling the renaming of packages, classes, and methods.
Overload Induction™ renames method based on method signatures to produce
many methods with the same name. Simple renaming renames the methods so that
there is no overloading.

Encrypt Strings

Enables or disables string encryption obfuscation globally. You can control the
portions of the application to which string encryption is applied by using include and
exclude rules. If you do not specify any rules then all methods will have their strings
encrypted.

D A S H O ™ U S E R ’ S G U I D E

4 6 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Members Options

This section has obfuscation options that affect class members – methods and
fields.

Make Synthetic

This obfuscation marks methods and fields as synthetic, generated by the Java
compiler, which confuses some decompilers. It has four possible settings:

 Never – No methods or fields are affected.

 Only private and package – Methods and fields that are private or package-
private are made synthetic.

 If not public – Methods and fields that are private, package-private, or protected
are made synthetic.

 All – All methods and fields are made synthetic.

This setting is stored in the <make-synthetic> Section of the project file.

Control Flow – Options

The Control Flow Options panel lets you determine if Try/Catch handlers should be
added to methods to further confuse de-compilers. You can also select the
maximum number of handlers to be added to a method.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 47

Control Flow – Include and Exclude

The Control Flow Include and Exclude panels let you compose rules that determine
which parts of the application will have control flow obfuscation applied to methods.
Methods, classes, or entire packages may be selected. Items should be excluded if
you are concerned about possible performance issues.

See Graphical Rules Editing Interface for details.

D A S H O ™ U S E R ’ S G U I D E

4 8 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Renaming - Options

When renaming has been enabled the Renaming Options panel gives you additional
control over the renaming of items in your application.

Renaming

Enables or disables renaming of classes, methods, and fields globally. You can
control the portions of the application to which renaming is applied by using exclude
rules as well as controlling the renaming of packages, classes, and methods.
Overload Induction™ renames method based on method signatures to produce
many methods with the same name. Simple renaming renames the methods so that
there is no overloading.

Rename Annotations

Enables or disables renaming of internally defined annotations.

Classes/Packages

You can elect to rename classes or to keep their original names. This provides for a
very course level of control – you can use exclusions to preserve the names of
individual classes, whole packages, or classes that meet certain criteria. When

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 49

randomize is selected new class names are assigned in a random fashion from the
list of shortest available identifiers.

When classes are renamed you can specify if the package hierarchy should be
flattened1 or if the package naming hierarchy is retained.

When a class is renamed you can add an optional prefix to the new name. You can
use periods in the prefix to place the renamed classes into a different package.

Members

You can elect to rename all methods and fields or to retain the names of public
members. This provides for a very course level of control – you can use exclusions
to preserve the names of particular methods based on their names, arguments and
other criteria. When randomize is selected new method and field names are
assigned in a random fashion from the list of shortest available identifiers.

Alphabets

You can specify the alphabets used to create the new names for classes and
members. You can select one of the predefined alphabets or enter your own. When
creating your own alphabet the following restrictions apply:

 The minimum length of the alphabet is two characters. Three or more are

recommended for larger projects.

 The initial characters of the alphabet must be valid starting characters for Java

identifiers. You must have at least one starting character.

 The remaining characters of the alphabet must be valid characters for Java

identifiers.

1 This option puts all renamed classes into the default package.

D A S H O ™ U S E R ’ S G U I D E

5 0 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Renaming – Exclude

The Renaming Excludes panel lets you compose rules that exclude classes and/or
their methods and fields from renaming. Individual methods, fields, classes, or entire
packages may be excluded.

When a class rule is defined it can be used to exclude the class itself from renaming
or only the members matched by its method and field rules. To change this setting,
right-click on the rule to edit it’s properties and change the Selects Class setting.

See Graphical Rules Editing Interface for details.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 51

Renaming – Map Files

The Renaming Map Files panel is used to instruct DashO to read or write the
renaming information for the project. This information is used to perform incremental
renaming or to decode stack traces from an obfuscated application.

Map Input File

The map input file specified is a file created by a previous DashO run. Using this file,
DashO uses the names used in the previous run. The map report file will note the
changes detected and the renamer’s reaction to those changes.

Map Output File

The information created in this file can be used for the map input file in a future
DashO run. It is also used to decode a stack trace from your obfuscated application.
Since accidental loss of this file could destroy your chances of incrementally
updating your application in the future, DashO does not automatically overwrite this
file. Selecting the Overwrite option allows DashO to overwrite an existing file.

D A S H O ™ U S E R ’ S G U I D E

5 2 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

String Encryption – Options

The String Encryption – Options panel controls the encryption of strings, the
encryption techniques, and allows you to control the location where the decryption
method is placed.

Encrypt Strings

Enables or disables string encryption obfuscation globally. You can control the
portions of the application to which string encryption is applied by using include and
exclude rules. If you do not specify any rules then all methods will have their strings
encrypted.

Level

This control selects the level of string encryption to use. Level 1 uses a simple and
fast decryption technique while level 10 uses a more complex but slower technique.
Increasing values use various expressions to increase the complexity of
decompilation as well as adding randomness factors to the implementation of
decryption methods.

Decrypters

This controls the number of decryption methods that will be generated and added to
the input classes. The names and signatures of the methods are randomly selected
(except when using an input file).

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 53

Decrypter Class

This setting lets you control the exact class where the decryption methods or a set of
criteria that limits where it can be placed. If you do not specify any value DashO will
choose a class from the public classes in the input. To change the selection criteria
click the Edit button to bring up a properties dialog.

Input

The map input file specified is a file created by a previous DashO run. Using this file,
DashO creates the same decrypters used in the previous run. This is necessary for
an incremental obfuscation. It is used it in addition to the renaming map file. When
an input file is provided, settings for the number of decrypters and the decrypter
class will be ignored.

Output

The information created in this file can be used for the map input file in a future
DashO run. It stores information about the types of decrypters, the method names
used, and the classes where they were placed.

D A S H O ™ U S E R ’ S G U I D E

5 4 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

String Encryption – Include and Exclude

The String Encryption Include and Exclude panels let you compose rules that
determine which parts of the application will have strings encrypted. Methods,
classes, or entire packages can be selected. Since string encryption adds a size and
runtime performance cost, you can selectively include parts of you application where
sensitive string information is located or exclude sections where performance may
be impacted by the runtime decryption.

See Graphical Rules Editing Interface for details.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 55

Custom Encryption

The Custom Encryption panel lets configure your own encryption/decryption
methods to be used. This allows you to provide your own level of encryption. See
Using Custom Encryption for the requirements of the encryption and decryption
methods.

Use Custom Encryption

Enables or disables the use of custom encryption obfuscation globally. You can
control the portions of the application to which custom string encryption is applied by
using include rules. You must specify at least one rule for custom encryption to work.

Encryption Jar

The jar containing the encryption class and method. This jar is external to your
project. It will be used while obfuscating to encrypt strings.

Encryption Class and Method

The class and method used to encrypt the text. This method will not be part of the
output. Clicking Choose… will bring up a dialog with all the methods inside the
encryption jar, which match the requirements.

Decryption Class and Method

The class and method used to decrypt the text. These classes must be part of the
project inputs. The class and method you specify will remain in your output (but
may be renamed/obfuscated based on other project settings). Clicking Choose… will

D A S H O ™ U S E R ’ S G U I D E

5 6 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

bring up a dialog with all the methods from the inputs, which match the
requirements.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 57

Custom Encryption – Include

The Custom Encryption Include panels let you compose rules that determine which
parts of the application will have strings encrypted using the custom encryption.
Methods, classes, or entire packages can be selected. This should be considered a
subset of overall string encryption. Any class/method specified here must not be
excluded from string encryption.

See Graphical Rules Editing Interface for details.

D A S H O ™ U S E R ’ S G U I D E

5 8 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Make Synthetic - Options

The Make Synthetic – Options panel lets you control if and how synthetic flags are
added to fields and methods. Synthetic flags confuse some de-compilers

Make Synthetic

This obfuscation marks methods and fields as synthetic, generated by the Java
compiler, which confuses some decompilers. It has four possible settings:

 Never – No methods or fields are affected.

 Only private and package – Methods and fields that are private or package-
private are made synthetic.

 If not public – Methods and fields that are private, package-private, or protected
are made synthetic.

 All – All methods and fields are made synthetic.

This setting is stored in the <make-synthetic> Section of the project file.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 59

Make Synthetic – Exclude

The Make Synthetic Exclude panel let you compose rules that determine which parts
of the application will have will not be marked synthetic. Methods, classes, or entire
packages can be selected.

See Graphical Rules Editing Interface for details.

D A S H O ™ U S E R ’ S G U I D E

6 0 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Optimization – Options

The Optimization - Options panel controls the optimization settings for your project.

Optimize Byte Codes

Enables or disables byte code optimization globally. You can control the portions of
the application to which byte code optimization is applied by using include and
exclude rules.

Make Public

This controls the modification of access control to public. Options are to force or
prohibit the conversion to public access or to let DashO decide. The default value is
to let DashO decide. See the section on makepublic and nomakepublic global
options for details.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 61

Byte Code Optimization – Include and Exclude

The Byte Code Optimization Include and Exclude panels let you compose rules that
determine which parts of the application will be optimized. Methods, classes, or
entire packages can be selected.

See Graphical Rules Editing Interface for details.

D A S H O ™ U S E R ’ S G U I D E

6 2 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

PreMark

The PreMark panel is used to add a watermark to jars produced by DashO.
Watermarks can only be applied to jars and this feature will be disabled when
DashO's output is to a directory. If multiple jars are created the same watermark is
added to all jars.

Watermark Jar

Enables and disables the watermarking feature.

Watermark

This is the watermark string that will be applied to the jar. The characters that can be
used in the watermark are determined by the character map setting.

On overflow

If the watermark string is too long to be applied the jar, DashO can either truncate
the string and proceed, or halt the build.

Character map

The character map is used to encode the watermark string into a minimal set of bits.

Passphrase

The optional passphrase is used to encrypt the watermark before it is applied to the
jar.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 63

Instrumentation – Options

The Instrumentation – Options panel is where you control the setting for
instrumenting your application for PreEmptive Analytics. You enable the
instrumenting of classes for PreEmptive Analytics, define annotation processing, and
select the runtime Java environment for the application.

Instrument Classes

Enables or disable the feature. Instrumentation is used to add analytics messages
and Shelf Life expiration to the application.

Send Messages

Should messages be sent to a PreEmptive Analytics server when the application is
on-line or should messages be stored for later transmission?

Store Off-line Messages

Should messages that cannot be sent to a PreEmptive Analytics server, either
because the application is off-line or Send Messages is disabled, be saved for later
transmission. Offline storage is not supported on mobile devices.

Gather Full Data

Some PreEmptive Analytics actions, such as the performance probe and the system
profile, can return either full or partial data. If your do not require detailed information
such as the machines manufacture and model, you can opt to return partial data.

D A S H O ™ U S E R ’ S G U I D E

6 4 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

This can reduce the time required to generate the message as well as the
transmission and/or storage requirements.

Omit Personally Identifiable Information (PII)

Configures if the messages sent to a PreEmptive Analytics server should contain
personally identifiable information (PII). PII includes IP addresses, MAC identifiers,
and names that could be used to identify the user or machine.

Honor Annotations

Should PreEmptive instrumentation annotations references in the code be honored
or ignored. Annotations in the code are merged with virtual annotations to determine
the instrumentation that will take place.

Strip Annotations

Should PreEmptive instrumentation annotations references be removed from the
input classes? If the annotations are not stripped you may have to ship the
annotations jar with your application.

Java Environment

This selects the runtime environment of your application, and determines which
PreEmptive Analytics implementation jar will be used with your application.

Merge Runtime

Should the jar that implements the PreEmptive Analytics classes be merged with the
application or left as a separate jar. When merged with the application DashO will
first try to merge it with one of the input jars. If no jars are available, or the classes in
the jar have been excluded or pruned to the point where the jar is empty, it will select
the first directory. If you do not merge the runtime jar then you will need to ship it
separately with your application.

Note

If Send Messages and Store Off-line Message are off then message generation

is disabled. These global values can be overridden by real or virtual annotations.

Values for both options can be either fixed Boolean values or from dynamic
sources.

Offline Storage Customization

By default, messages are stored in a directory called “.psrios” located in the user’s
home directory on the machine (e.g. C:\Users\{username}\.psrios or
/usr/home/{username}/.psrios). The base location can be changed by setting the
dasho_offline_ri_dir variable. This can be set in as an environment variable or java
system variable. If both are set, the java system variable takes precedence. The
location specified must be a directory where the user running the instrumented
application has permissions to read, write, and delete files. Examples of ways to
set:

 Set an environment variable:
o Windows: set dasho_offline_ri_dir={the full path you want}
o Unix(csh): setenv dasho_offline_ri_dir {the full path you want}

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 65

o Unix(bash): export dasho_offline_ri_dir={the full path you want}
 Set on to the java command line:

o -Ddasho_offline_ri_dir={the full path you want}
 Set inside the codebase as follows:

o System.setProperty(“dasho_offline_ri_dir”, {the full path you want});
o However, this method call must occur before the Instrumentation for

application start.

Note

If dasho.offline.ri.dir is set to an invalid location or a directory where the user does

not the appropriate permissions, offline messages will not be stored.

D A S H O ™ U S E R ’ S G U I D E

6 6 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Instrumentation – Properties

The Instrumentation – Properties panel is where the unique identifiers for the
application and the application owner are entered. Entering this information ensures
that the analytics messages are routed to the right place and displayed correctly in
the PreEmptive Analytics server.

End Point

This is the location of a PreEmptive Analytics server. You can either choose from the
list of endpoints provided by PreEmptive or enter a custom endpoint if you have a
self-hosted server. The end point is like a URL but does not include the protocol.

Use SSL

Should HTTP or HTTPS protocol be used when sending data to the end point.

Company ID

This is the unique ID assigned to your company by PreEmptive Solutions. Clicking
the green arrow next to ID will automatically populate the company fields with the
information you entered in User Preferences.

Company Name

This is the name of your company.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 67

Application ID

Click the green arrow to auto populate this field with a unique ID for your application
instrumented for PreEmptive Analytics. Clicking the green arrow next to ID will
automatically populate the ID field with a random identifier that you can use for your
application.

Application Name

This is the name of your application that will be sent to a PreEmptive Analytics
server and will be used for identification purposes.

Version

This is the version number of your application that will be sent to a PreEmptive
Analytics server and will be used for identification purposes.

Type

This identifies the application type that will be sent to a PreEmptive Analytics server
and will be used for identification purposes.

Note

All the data on this panel is optional. It can be combined or overridden by

annotations in the code or by virtual annotations in DashO. The values on this
panel will be used only if they are not superseded by annotations.

D A S H O ™ U S E R ’ S G U I D E

6 8 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Instrumentation – Shelf Life

The Instrumentation – Shelf Life panel is where you configure the addition of an
expiration check to your application. DashO uses this information to create an
expiration token that is placed inside your code to enforce the expiration policy. The
check is performed where an ExpiryCheck annotation appears in the code or with a
virtual annotation. Expiration tokens can also be read in from external files or
resources using the ExpiryTokenSource annotation in which case you can leave the
entries on this panel blank.

Key File

Enter the location of the Shelf Life key file you received from PreEmptive Solutions.
This file authorizes you to add expiration checks to your application.

Expiration Date

Your application can be configured to expire on an explicit date or a certain number
of days after a dynamically determined start date. When an explicit date type is
selected you can use the Select button to pop-up a calendar to select the date.
Dates are always in MM/DD/YYYY format regardless of the local convention.

Warning Date

Your application can be configured to issue expiration warnings starting on either an
explicit date or a certain number of days before it is due to expire. When an explicit
date type is selected you can use the Select button to pop-up a calendar to select
the date. Dates are always in MM/DD/YYYY format regardless of the local convention.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 69

Properties

You can add arbitrary properties to the expiration token that can be retrieved by your
application. To use this feature you need to supply a user defined action to the
ExpiryCheck – this action method is passed the expiration token where you will be
able to retrieve these properties. Note that both the property name and values can
contain DashO property references.

Note

The information supplied on this panel can be overridden or supplemented by

annotations in your code or by DashO’s virtual annotations.

D A S H O ™ U S E R ’ S G U I D E

7 0 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Instrumentation – Annotations

DashO uses annotations to perform instrumentation. Annotations are the instructions
for identifying what is to be instrumented, such as classes or methods, and how to
instrument them. These annotations augment or override annotations present in the
class files. The Virtual Annotations screen behaves similarly to the Graphical Rules
Editing Interface.

Name

This is the name of the class, method, or annotation that is clicked on or highlighted.

Signature

This is a list of types that match the types in the method’s parameter list.

Value

This is an annotation specific value. Annotations such as FeatureStart and
FeatureStop use this as the name of the feature. Not all annotations use a value.

Annotate Button

This allows you to add annotations to be applied to the method or class. You can
also add the annotations by right-clicking rules or items in the class list. Only
FeatureTick, FeatureStart, and FeatureStop annotations can be used multiple
times on a given method.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 71

Output – Options

The Output - Options panel controls where DashO will place the results of the build
and what form those results will take.

Merge inputs

DashO can combine the obfuscated results into a single directory or jar or keep the
original packaging of the input classes.

Auto copy

Auto copy controls how non-class files are handled when merging inputs. It is
available when merge in on and works as follows:

 Merge Off
o Non-class files from jar inputs will be copied. Non-class files from

input directories will not be copied.
 Merge On

o Auto Copy On – Non-class files from both input directories and input
jars will be copied to the output.

o Auto Copy Off – Non-class files will not be copied to the output.

Note

XML configuration files found when processing the non-class files may be updated

allowing class and method names to be changed.

D A S H O ™ U S E R ’ S G U I D E

7 2 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Create Directory/Single Jar

When you are merging DashO can place the results of the build into either a
directory or into a single jar. Turning off merging requires that the output be a
directory. See the <output> Section for instruction regarding writing the output to a
directory or a jar file.

Name and Manifest

The Name field specifies the name of the output directory or jar. When merging is off
only a directory can be used. DashO will use this as the root of the output and will
attempt to recreate the hierarchy of the original input jars and directories.

If you have DashO create a single merged jar for you DashO can add a manifest file
to the jar. The manifest can either be in the form of a text file or DashO can extract
the manifest from a jar file.

Jar Options

 Compress: Not only store data but also compress it.

 Level: Level at which file compression should be performed. Valid values range
from 0 (no compression/fastest) to 9. The default value is 6.

 Exclude Directory Entries: Store only file entries, not directory entries.

 Preserve Jars With No Classes: Output jars when they have no remaining
classes. This can be used to output resource jars.

Constant Pool Tag

The optional constant pool tag text is inserted into every class in the resulting output.
See <constpooltag> for details.

SourceFile Tag

The SourceFile attribute of every resulting output class is set to the given value. See
<sourcefile> for details.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 73

Output – Reports

The Output - Reports panel configures the generation of reports that detail the
results of the build.

Report file

Specifies the name and location for a report outlining the class and member removal
and renaming performed by DashO. A summary is given detailing the total
methods/fields/constant pool entries, as well as the final number and percentage of
reduction after DashO execution. It also contains information about dynamically
loaded classes, including reflection and Class.forName() calls.

Renaming Report File

This specifies the name and location for a report listing old and new names for
renamed classes as well as their renamed members.

D A S H O ™ U S E R ’ S G U I D E

7 4 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Output - Preverification

You can choose to run the preverifier on your CLDC application after DashO is
finished processing your class files. You can enable or disable preverification by
checking the Run Preverifier checkbox.

By default DashO will try to find the preverifier application preverify on the system
path. If you need to run a particular version of the preverifier you can explicitly
specify which one to run.

No Finalize

Pass -nofinalize to the preverifier: no finalizers are allowed in the input.

No Floating Point

Pass -nofp to the preverifier: no floating point operations allowed in the input.

No Native Methods

Pass -nonative to the preverifier: no native methods allowed.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 75

Output – Signing

You can have DashO sign the output jars that it produces. You can enable or disable
signing by checking the Sign Jars checkbox.

By default DashO will try to find the signing application jarsigner on the system
path. If you need to run a particular version of the jar signer you can explicitly specify
which one to run.

Key Store

This information defines the key store that contains the private key used for signing.
Only the Password is required. The Type defaults to type specified in the global
keystore.type security property and the Location defaults to the .keystore file in
your home directory. Passwords that do not contain property references are stored
in an encrypted form in the project file.

Signing Key

This information specifies the private key that is used to perform the signing. Only
the Alias value is required. The Password defaults to the password specified for the
key store. This password is also store encrypted in the project file if it does not
contain any property references.

Options

These values corresponds to the -sigFile, -internalsf, and -sectionsonly options
of jarsigner. Please see jarsigner - JAR Signing and Verification Tool for details on
their use.

http://java.sun.com/javase/6/docs/technotes/tools/solaris/jarsigner.html

D A S H O ™ U S E R ’ S G U I D E

7 6 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Building

There are two ways to build in the user interface. You can click the Build Project
button on the Toolbar or select File > Build in the Menu.

During and after the build, you may view DashO’s output in the console area.

The build performs method/field removal, renaming, control flow, string encryption,
optimization, and writing and packaging of the final classes. This may take up to
several minutes depending on the number of classes DashO need to process.

When the build has completed DashO will show the results panel in the work area
screen automatically. If the build encountered an error the console display will switch
to the Problems tab.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 77

Output – DashO Results

The Output - DashO Results panel shows the class hierarchy of the input classes of
the project and the results of renaming.

D A S H O ™ U S E R ’ S G U I D E

7 8 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Using the Graphical Rules Editor

Many of the panels in DashO’s user interface are rule editors, primarily for including
and excluding elements in your application in an obfuscation transformation. A rule
editor is divided into two lists – a class list on the left hand side that shows the
classes and members of the input and a rule list on the right. The rules specify what
parts of the input are affected by the operation and in some cases the actions to be
taken. The rules editor is used to set rules for the following operations:

 Renaming exclude rules

 Removal exclude rules

 Control Flow Obfuscation include and exclude rules

 String Encryption include and exclude rules

 Make Synthetic exclude rules

 Optimization include and exclude rules

Other parts of DashO, such as entry points, use an interface very similar to the rule
editor.

Creating Rules

There are several ways to create rules in the interface:

 Right-click items in the class list – you can click on items in the class list to
bring up a contextual menu. From there you can build a rule that will match the
item that you have selected. If you hold down the shift key when you create the
rule the rule will be made a regular expression. If you create a rule for a method
or a field, DashO will add the new rule to a pre-existing class rule or create one if
needed.

 Drag and drop items from the class list – you can drag an item from the class
list and drop it on the rules. If you drag and drop either a method or a field,
DashO will add the new rule to a pre-existing class rule or create one if needed.

 Using the buttons – You can click the new buttons to the right of the rules list to
create a new entry. A new rule will be created with a dummy name that you can
edit.

Editing Rules

The basic parts of a rule can be modified directly in the editor. The name of any item
and the signature or methods can be changed by using the text field immediately
below the rules list. Specialized editors may also provide for direct editing of their
values.

To access all the settings for a rule right-click on the rule and select the Properties
item on the contextual menu. In the properties box you will find the settings for
values such as:

 Modifiers – the Java modifiers, or their negation, which are required for this rule
to match an item. See the description of the Modifiers attribute for values you can
use here.

 Name – the name of the item that the rule affects. This can be a constant value,
a pattern, or a regular expression.

 Signature – the signature for methods.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 79

 Type – determine how the name and/or signature are to be interpreted. See
Patterns and Regular Expressions for details.

 Select class – For rules that affect the class itself as well as its members, this
setting determines if the rule applies to the class, or if the class is just a container
for nested field or method rules.

 Renaming controls – Entry points are non-renameable by default. Some types
of entry points can be made renameable and these controls determine if the
class and/or its members can be renamed.

 Values for annotations – Virtual annotations can contain many specialized
values. Some contain only a generic value – use the tool tip display to determine
its use. Annotations that perform an action will also have a where value. This
determines the location in the method where the action will take place.

Previewing rules

You can use the preview function to determine what will be affected by the rules.
You can elect to preview a single rule or all rules. Right-click a rule to bring up the
contextual menu and select Preview Rule or Preview All. The items in the class list
that will be affected by the rule will be displayed in bold. You can use the contextual
menu in either list to clear the highlighting of rules.

Section on interaction between include and exclude

Patterns and Regular Expressions

A simple rule selects a particular item, such as a class, using the name of the item
literally. A rule can also select items by using patterns or by using regular
expressions. See Patterns and Regular Expressions.

Regular Expressions are checked automatically. If your expression has an error a
red X will be displayed next to it. Move the pointer over the rule and the tool tip will
display the location of the error and its description.

Note

Regular expressions apply to the rule as a whole. If a class name is specified as a

regular expression, all member names will be treated as regular expression.
Patterns do not have this restriction.

Combining Include and Exclude Rules

DashO can use a combination of inclusion and exclusion to determine what parts of
your application to obfuscate. When an obfuscation transformation allows for the
definition of both includes and exclude it is important to remember how the two are
combined:

 If no include rules are defined all items are included by default.

 If no exclude rules are defined no items are excluded by default.

 Includes are determined first, then excludes. An item must be included by at least
one rule and not excluded by any rule to have a transformation apply to it.

D A S H O ™ U S E R ’ S G U I D E

8 0 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Customer Feedback Options

DashO provides an anonymous usage reporting system that users can opt-in to. If
you opt in to this program, only anonymous high level usage data will be gathered by
PreEmptive Solutions with the sole intent of improving DashO. You may change
your options at any time from the Help > Customer Feedback Options menu.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 81

Quick Jar User Interface

In this section, we explain how to use DashO's interface for quick jar projects. You
can use the interface to create new quick jar projects or edit existing ones.

Input Jars

The Input Jars panel is used to specify the jars that are to be processed. DashO
examines these jars for manifests that contain Main-Class entries. These will be
used as the entry points into the application. If there are no Main-Class entries, then
the jars are processed as libraries. Any non-class files in the input jars are copied to
the output jar.

Click the Add button to bring up a browse dialog that allows you to navigate your file
system and select one or more a jars. You can also add jars by clicking New and
typing the name of the jar in the Name: field.

Note

Input Jar names support properties.

D A S H O ™ U S E R ’ S G U I D E

8 2 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Input - Options

The Input - Options panel controls the actions that are applied to the input jars.

Ignore Missing Classes

DashO will attempt to analyze all classes that the application attempts to call. You
can instruct DashO to ignore these classes by selecting this option. Note that DashO
cannot skip classes and interfaces that the application extends or implements.

Ignore Missing Methods

DashO will attempt to locate concrete implementations of methods as part of its
analysis. Turning this method on lets DashO proceeded even if it cannot locate the
desired method. Use this option with caution.

Use Exit Behavior from DashO 6.x and Earlier

The DashO command line and ant tasks return the number of errors as the exit
code. Enabling this option will set DashO to use 0 as the exit code when there are
no fatal errors.

Halt on First Error

DashO produces errors, warnings, and informational messages while processing the
inputs. Turning this option on configures DashO to immediately stop processing
when it encounters an error.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 83

Bypass DashO Processing

This option is not supported in Quick Jar projects.

Reflection Halts Build

DashO's analysis makes note of reflection usage in the application so that the
targets of reflection can be addressed. Turn this option on when you are determining
what parts of the application use reflection.

Determine Reflected Classes

DashO can determine simple targets of reflection and automatically add these
classes to the list of included classes. Note that this behavior can increase build
time.

Rename Reflected Classes

By default targets of reflection are not renamed. Use this option to allow these
classes to be renamed.

D A S H O ™ U S E R ’ S G U I D E

8 4 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Supporting Classpath

The supporting classpath has the list third party jars and class files used by your
application that you do not want to obfuscate or include in the final jar. These are
important to DashO since your classes can extend from the third party libraries and
the renaming system needs to see those classes to determine the methods that are
safe to rename.

To add a supporting jar, click the Add button and select the required jars. You can
also add jars by clicking New and typing the name of the jar in the Name: field.

Note

Supporting Classpath names support properties.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 85

User Properties

The User Properties lets you create and assign values to properties that can be
referenced in the project. This can allow you to create a project that acts as a
template. See the <propertylist> section for information about using properties in
your project.

D A S H O ™ U S E R ’ S G U I D E

8 6 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Obfuscation – Options

Rename Classes and Method

Enables or disables the renaming of class and methods in the project. If the inputs
contain manifests that have Main-Class entries those classes and their main()
method will not be renamed. If the jars are being processed as a library, only non-
public items will be renamed.

Rename Annotations

Enables or disables renaming of internally defined annotations. If the jars are being
processed as a library the annotations will not be renamed.

Control Flow

Enables or disables control flow obfuscation globally.

Encrypt Strings

Enables or disable string encryption obfuscation globally.

Optimize Byte Codes

Enables or disables byte code optimization globally.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 87

Options – Renaming Exclude

The Options - Renaming Exclude panel lets you specify classes and/or their
methods that are excluded from renaming.

Excluded Class

Adding a class or package to the Excluded Classes list instructs DashO that the
class should not be renamed. Methods in the class may be renamed. See <classes>
Entry Point for details.

Excluded Classes + Methods

Adding a class or package to the Excluded Classes list instructs DashO that the
class and its methods should not be renamed. See the <unconditional> section for
details.

D A S H O ™ U S E R ’ S G U I D E

8 8 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

PreMark

The PreMark panel is used to add a watermark to the obfuscated jar produced by
DashO. Watermarks can only be applied to jars and this feature will be disabled
when DashO's output is to a directory.

See the PreMark section of the Advanced Interface for details.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 89

Output - Options

The Destination is where you specify an output jar file. DashO writes all the
obfuscated classes to the output jar. If you know the name and path of the output jar
file you want to use, you can enter it directly in the text box. Alternatively, you can
browse your file system for the intended file location using the Browse button.
There are several jar options:

 Compress: Not only store data but also compress it.

 Level: Level at which file compression should be performed. Valid values range
from 0 (no compression/fastest) to 9. The default value is 6

 Exclude Directory Entries: Store only file entries, not directory entries.

Note

Only one output jar is generated regardless of the number of input jars specified.

Report file

This specifies the name and location for a report outlining the method/field removal
and renaming performed by DashO. A summary is given detailing the total
methods/fields/constant pool entries, as well as the final number and percentage of
reduction after DashO execution. It also contains information about dynamically
loaded classes, including reflection and forName calls.

D A S H O ™ U S E R ’ S G U I D E

9 0 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Renaming Report File

This specifies the name and location for a report listing old and new names for
renamed classes as well as their renamed members.

User Preferences

The User Preferences dialog lets you configure some aspects of DashO's user
interface and pass options to the obfuscation engine. These values are not saved in
project files and apply to any projects that DashO has loaded.

General Options

Text editor

This is the name of the application that is used to view the project file and reports
generated by DashO. Note that you can use property references when setting the
text editor name.

Show Toolbar

This controls the visibility of the tool bar buttons.

Tree Collapsible

This enables or disables collapsing the sections in the left-hand side navigation.

Show wizard on startup

This controls if the new project wizard will automatically launch when DashO is
opened.

Auto update check

This enables an update check at start-up that sees if an updated version of DashO is
available.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 91

DashO Engine Options

Verbose output

This is the same as passing --verbose to DashO's command line version. See
DashO Command Line for details. Please note that enabling verbose output can
increase the build time.

Print Stack Traces

This is the same as passing --printStackTraces to DashO's command line version.
See DashO Command Line for details.

Debug output

This requests DashO to produce debugging output. In general this option should
remain off unless instructed by PreEmptive support staff.

D A S H O ™ U S E R ’ S G U I D E

9 2 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Instrumentation Options

When you start using a PreEmptive Analytics product (such as Runtime Intelligence
Service or PreEmptive Analytics for TFS) you will receive a company ID from
PreEmptive Solutions to use in your instrumented applications.

To Configure Instrumentation

 Click Help > User Preferences to open the Preferences Dialog Box. Click on the
Instrumentation tab.

 Enter your Company ID and the Name of your company in the appropriate fields.
The ID and the Name are the default values for your projects. These can be
copied into the project by using the arrow in the Instrumentation – Properties
page.

 Click OK.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 93

Decoding Stack Traces

One potential drawback of obfuscation is that troubleshooting obfuscated
applications is difficult due to name-mangling. DashO addresses this issue by
providing an integrated tool that allows you to use your output mapping files to
recover the original symbols from obfuscated stack traces.

For example, if you have an obfuscated application that you have shipped and you
receive a stack trace from one of your customers, that stack trace might look
something like this:

Example

Unhandled Exception: java.lang.Exception: A bad thing

happened!

 at b.a(Unknown Source)

 at d.b(Unknown Source)

Keep in mind it is possible to keep some Debug Information. Not removing line
numbers allows you to see them in the stack traces. This tool and that option can
greatly improve your ability to debug obfuscated programs.

You can use your mapping report file to manually recover the original names, but
this is a tedious and time consuming process.

The stack trace translation tool automates this by letting you provide a map output
file, paste the stack trace into a window, and press the Translate button. The
translated stack trace is shown on the Translation Report tab.

D A S H O ™ U S E R ’ S G U I D E

9 4 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Some methods in the obfuscated stack trace might be ambiguous: when using
Overload Induction there may be more than one matching un-obfuscated method. In
these cases all possibilities are displayed.

If you just want to look up a specific class or method by name, click the Decode
Specific Element tab. You will see a screen that will allow you to type in the
obfuscated names of the specific items you want to translate.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 95

Generating Shelf Life Tokens

You can use DashO’s user interface to generate Shelf Life tokens that are read in by
your application at runtime. The information need to create the tokens is similar to
having DashO inject the tokens directly into your application. See Instrumentation –
Shelf Life.

Save

The Save button lets you save the configured token to a file.

Copy

The Copy button copies the token as text to the clipboard so that you can paste it
into source code, resources, or property files.

D A S H O ™ U S E R ’ S G U I D E

9 6 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Using the Command Line Interface

This section describes using DashO as a command line program. The command line
interface is designed to allow you to:

 Obfuscate from the command line without requiring you to create a configuration
file.

 Override or supplement options in an existing configuration file using command
line options.

 Add a watermark to a jar.

DashO Command Line

Command line options must begin with the '-' character.

Example

dashocmd [options] [projectfile]

The following is a summary of the command line options.

Options Description

projectfile DashO project file

-h, --help Display command line help

-e, --printStackTraces Print stack traces for exceptions

-v, --verbose Print verbose messages

-q, --quiet Print minimal amount of messages

-f, --force Force execution

The projectfile is a configuration file that is required for every run of DashO unless
Quick Jar mode is specified. Notice you do not enter entry point methods on the
command line. This information must be found in the configuration file.

The –h, --help option displays command line help on demand.

The –e, --printStackTraces option will print stack traces for exceptions.

The –v, --verbose option induces DashO to provide printed verbose messages
about its progress during execution.

The –q, --quiet option tells DashO to run completely and print a minimal amount of
messages. This is suitable for inclusion into application build sequences. This option
overrides verbose mode.

The –f, --force option forces execution even if DashO finds Class.forName()
methods (discussed in detail in Advanced Topics). The use of the force global option
is preferred over the command line use of this option.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 97

Building Projects from the Command Line

DashO can execute a project file from the command line. To do this, use:

Example

dashocmd [options] projectfile

The project file can be either an advanced mode or quick jar mode project.

D A S H O ™ U S E R ’ S G U I D E

9 8 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Watermarking PreMark Tool

You can use the PreMark tool to add a watermark or to read the watermark. It is a
command line tool to watermark a jar without needing to start DashO. Using this tool
you can PreMark any jar file even if it has not been obfuscated by DashO.

To run the command line PreMark tool, use the following command:

Example

premark [options] inputfile

The command line options must begin with the '-' character. The following is a
summary of those options.

Traditional Options Description

-h, --help Display command line help

-e, --printStackTraces Print stack traces for exceptions

-v, --verbose Print verbose messages

-q, --quiet Print minimal amount of messages

--version Show version and exit

-r, --read Read watermark

-m, --mark <watermark> Add watermark

-o, --output <file> Output file

-p, --passphrase

<passphrase>

Passphrase to encrypt/decrypt watermark string

-t, --truncate Truncate watermark if too big (default: fail)

-c, --charmap <charmap> Character map name (6bit-a|6bit-b|7bit-a|4bit-a|utf8)

The –h, --help option displays command line help on demand.

The –e, --printStackTraces option will print stack traces for exceptions. .

The –v, --verbose option causes the PreMark tool to provide printed verbose
messages about its progress during execution.

The –q, --quiet option tells DashO to run completely and print a minimal amount of
messages. This is suitable for inclusion into application build sequences. This option
overrides verbose mode.

The --version option causes the PreMark tool to provide the version of the
application and then to exit that application.

The –r, --read option reads the watermark string from the specified input file.

The –m, --mark <watermark> option watermarks the given input jar with the
specified watermark string.

The –o, --output <file> option allows you to specify the path to the watermarked
output jar.

The –p, --passphrase <passphrase> option sets the passphrase. The PreMark tool
uses this passphrase to encrypt or decrypt the watermark string.

The –t, --truncate option truncates the watermark string if it is too long. If this
option is not specified, the default is to halt without watermarking the file.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 99

The -c option tells the PreMark tool which character map encoding should be used
to embed the watermark string in the given input jar.

Note

The value of charmap can be 6bit-a, 6bit-b, 7bit-a, 4bit-a, or utf8.

D A S H O ™ U S E R ’ S G U I D E

1 00 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Advanced Topics

This section describes different scenarios and issues encountered when obfuscating
Java applications and libraries.

Overload-Induction Method Renaming

DashO implements patented technology for method renaming called Overload-
Induction™. Whereas most renaming systems simply assign one new name per old-
name (i.e. getX() will become a(), getY() will become b()), Overload-Induction
induces method overloading maximally. The underlying idea being that the algorithm
attempts to rename as many methods as possible to exactly the same name.

The original source code before obfuscation:

Example

private void calcPayroll(SpecialList employeeGroup) {

 while (employeeGroup.hasMore()) {

 employee = employeeGroup.getNext(true);

 employee.updateSalary();

 distributeCheck(employee);

 }

}

And the reverse-engineered source after Overload Induction:

Example

private void a(a b) {

 while (b.a()) {

 a = b.a(true);

 a.a();

 a(a);

 }

}

One of the things you probably noticed about the example is that the obfuscated
code is more compact. A positive side effect of renaming is size reduction. For
example, if you have a name that is 20 characters long, renaming it to a() saves a
lot of space (specifically 19 characters). This also saves space by conserving string
heap entries. Renaming everything to a means that a is stored only once, and each
method or field renamed to a can point to it. Overload Induction enhances this effect
because the shortest identifiers are continually reused.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 101

Dynamic Class Loading

The forName() method of java.lang.Class is the way to load classes dynamically at
runtime. It is impossible for DashO to determine what classes are dynamically
loaded in all cases. Consider the following code:

Example

public Object getNewClass() {

 String newClassName = getUserInputString();

 try {

 Object newClass =

Class.forName(newClassName).newInstance();

 return newClass;

 }

 catch(Exception e) {

 // handle

 }

}

This code loads a class by name and dynamically instantiates it. In addition, the
name comes from a string input by the user. There is no way for DashO to predict
which class names the user will enter. The solution is to exclude the names of all
potentially loadable classes (method and field renaming can still be performed). This
is where manual configuration is required.

Note

Incorrect specification of dynamically loaded classes can cause obfuscated

applications to fail at runtime.

Predictable Dynamic-Loading

The simplest case is when you know your application well enough to know exactly
what classes could be loaded via dynamic-loading. If the dynamically loaded classes
share a base class or common interface:

Example

String s = getShapeName();

Shape myShape = (Shape)Class.forName(s).newInstance();

myShape.draw();

In this example, DashO’s can detect this pattern automatically and include all Shape
classes. If another type of creation pattern is used the classes would need to be
added individually in the entrypoints section of the DashO configuration file:

D A S H O ™ U S E R ’ S G U I D E

1 02 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Example

<entrypoints>

 <classes name="Triangle"/>

 <classes name="Rectangle"/>

</entrypoints>

In this case DashO will be able to remove unused methods from the Shape hierarchy.

Unpredictable Dynamic-Loading

In cases where the dynamically loaded classes would not know at the time the
application is obfuscated, for example, a user interface building application could
allow users of the application to include their own or third-party components, the
existing classes must be added as unconditional entry points.

Example

<entrypoints>

 <unconditional name="Triangle"/>

 <unconditional name="Rectangle"/>

</entrypoints>

This has several ramifications:

 Regardless of removal options, no methods or fields will be removed from an
unconditionally included class.

 Regardless of renaming options, neither the class nor its members will be
renamed.

 All methods within the class will be treated as entry point methods.

These rules enforce the idea that your interface to as-yet-unknown classes will
remain intact.

Reflection Report

DashO has several facilities to allow you to specify how or what is dynamically
loaded. The fornamedetection option in DashO handles most or all dynamically
loaded class instances.

Example

<global>

 <option>fornamedetection</option>

</global>

DashO reports all places it finds usage of forName(). This is provided as part of the
report file and as output after dependency analysis. Note that the
fornamedetection option will not give a wrong answer but it may give no answer
at all. Manual configuration is required in those instances where DashO reports
“unable to determine” dynamically loaded class.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 103

Example

NOTE:

Reflection use public void

com.yoyodyne.Application.getInterface() –

 java.lang.Class.newInstance() -

 [BaseInterface Possible: InterfaceImplementor]

Reflection use public boolean com.yoyodyne.Test.connect() -

 Class.forName()

Reflection use public float com.yoyodyne.Test.calculate() -

 Class.forName() - [com.yoyodyne.Linker]

Since DashO is unable to determine what class is dynamically loaded in the method
connect() manual configuration becomes necessary. The class that is dynamically
loaded in this method must be included using the <classes> tag under the
<entrypoints> section.

If DashO finds reflection usage and you do not specify the force global option,
DashO will not create any output classes or jars.

Serialization
If your application is brand new, meaning there are no existing serialized objects
within your application, then serialization may not be an issue for you. Classes that
were serializable before DashO obfuscated them will still be serialized afterwards.

If you have persistent objects already in existence, then you need to identify which
classes they were created from before running DashO. Method/field removal and
renaming will make reloading these objects impossible. The simple solution is to
unconditionally include the classes. List all your to-be-serialized objects there.

DashO automatically keeps fields with the name serialVersionUID intact (no
removal or renaming) to facilitate compatibility between versions. In addition, if the
readObject(), writeObject(), writeReplace(), or readResolve() methods of the
serializable framework are used DashO will automatically treat them as entry points.

D A S H O ™ U S E R ’ S G U I D E

1 04 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

PreEmptive Analytics

This section documents the development process when using PreEmptive Analytics.
It describes the different options available using the custom and extended attributes
and provides examples to illustrate.

Overview
The PreEmptive Analytics suite of products for is a technologies and services that
give application authors insight into how their applications are being used. DashO
can be used to instrument Java applications and components to transmit information
to PreEmptive Analytics servers.

DashO can instrument an application such that a message is sent when the
application starts and stops or when a designated feature is being used. Data sent to
the Runtime Intelligence Service aggregates this lifecycle data from the application
and exposes it through the Runtime Intelligence Portal, available to subscribers.

DashO adds analytics support to the application based on guidance provided from
custom annotations. When run on a properly annotated Java application, DashO
processes the annotations and instruments the application accordingly. The resulting
output application will be ready to send analytics data to the service.

Message Types

There are several message types:

 Application and Session Start

 Application and Session Stop

 Feature

 Performance Probe

 System Profile

Application and Session Start and Stop messages, the application lifecycle
messages, are sent when an application starts running and when it shuts down. The
information contained in these messages tracks application behavior and usage
patterns. Extended usage and environment information is obtained by using the
Feature, Performance Probe, or System Profile messages.

The data from these messages drive the Runtime Intelligence Portal’s dashboards.
To have your application send these messages, you must:

 Be a Runtime Intelligence Services subscriber. This gives you access to the
dashboards and data in the portal.

 Annotate your application with Application Start and Stop.

 Run your application through DashO with instrumentation turned on.

Custom Annotations

All instrumentation annotations are defined in dasho-annotations.jar, which is
located in the lib folder where you installed DashO. To add instrumentation

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 105

annotations to an application, add a reference to this jar that must be available at
compile time. While injecting instrumentation code, DashO removes references to
these annotations; therefore, the jar is not required at application runtime and does
not need to be distributed with the application.

In addition to using the custom annotations, all instrumentation annotations may be
specified as virtual annotations using the DashO User Interface. If you use virtual
annotations you do not have to modify the application source code. For a
programmer's reference, see the javadocs. If you have use an annotation in your
code, you should not repeat that annotation on the same class or method in the
DashO User Interface.

Feature Usage Tracking

DashO provides support for feature usage tracking via the feature annotations. The
developer may add a feature annotation to any method that maps to the start, stop,
or entirety of a feature. When DashO encounters a feature annotation during its
processing it adds code to the method to send an analytics message.

Feature Name

In order to make sense of feature-level analytics, features must be identified by a
name. The name is a string value that defines the name of the feature in question.
This name need not follow any particular convention; but it should be descriptive and
unique, except in cases where the feature in question is one half of a start-stop pair
in which case, the feature names must match.

annotations/index.html

D A S H O ™ U S E R ’ S G U I D E

1 06 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Feature Event Types

DashO has three annotations for denoting the event type.

 FeatureTick – a feature has been executed.

 FeatureStart – a feature has been started.

 FeatureStop – a previously started feature has ended.

FeatureStart and FeatureStop are used to compute execution time for a feature in
addition to tallying how many times it has been used. FeatureTick is used to only
tally usage.

Example

@FeatureStart("Find")

private void beginFind() {

 // ...

}

If a method’s logic fully encompasses a feature, you may place a start and stop
annotation on the method. DashO sends the start message when the method begins
and the stop message when the method completes.

Example

@FeatureStart("Find")

@FeatureStop("Find")

private void doFind() {

 // ...

}

annotations/com/preemptive/annotation/instrumentation/FeatureTick.html
annotations/com/preemptive/annotation/instrumentation/FeatureStart.html
annotations/com/preemptive/annotation/instrumentation/FeatureStop.html

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 107

Gathering Performance Information

PreEmptive Analytics code can be used to gather and send performance related
information while the application is executing. To add support for this to an
application, place a PerformanceProbe annotation on a method or methods in the
application. When DashO encounters the attribute during its processing, it adds
code to obtain performance information and send a message to a PreEmptive
Analytics server.

Performance data collected includes:

 CPU Utilization

 Memory available

 Memory used by current process

Example

@PerformanceProbe

public void doSomething() {

 // ...

}

The collected performance data is available in the Data Extract report on the
Runtime Intelligence Portal. It can also be downloaded from the File Feeds section.

Gathering Environment Information
PreEmptive Analytics code can be used to gather and send information about the
system the application is running on. To add support for this to an application, place
a SystemProfile attribute on a method in the application. When DashO
encounters the attribute during its processing, it adds code to gather the system
profile and send a message to a PreEmptive Analytics server. Typically this data
only needs to be collected once during an application run.

Below is a high level description of the kind of system data that is gathered:

 Processors – Number of processors, clock speeds, manufacturer, and
processor ID

 Logical Disks – Number of logical disks, volume name, size, free space, file
system

 Memory - Speed, capacity

 Network Adapters - IP address, MAC address

 Domain2 - Domain name and role

 Display - Name, refresh rate, vertical and horizontal resolution

 Video - Name, memory size, color depth

 Terminal Services3 - Connections allowed

 Sound – Name, manufacturer

2 Windows only.
3 Windows only.

annotations/com/preemptive/annotation/instrumentation/PerformanceProbe.html
annotations/com/preemptive/annotation/instrumentation/SystemProfile.html

D A S H O ™ U S E R ’ S G U I D E

1 08 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

 Modem – Model, device type

Example

@SystemProfile

public void initialize() {

 // ...

}

The collected data is available in the Data Extract report on the Runtime Intelligence
Portal. It can also be downloaded from the File Feeds section.

Sending User Defined Data

Most instrumentation message types allow user defined data in the form of key-
value pairs to be gathered and sent along with the message. To send this
information, specify a PropertySource on the method.

DashO uses the PropertySource to generate code that gathers the key-value pairs
at runtime. The PropertySource is a source for a Properties instance, either a field or
method. See Specifying Sources and Actions for more information.

Example

@FeatureTick("Click")

@PropertySource("getProperties()")

private void buttonClick(JComponent sender) {

 // ...

}

// Creates and populates custom properties

private Properties getProperties() {

 Properties props = new Properties();

 props.setProperty("key1", "val1");

 props.setProperty("key2", "val2");

 props.put("numeric", new Integer(934));

 return props;

}

Properties sent by the application are available in the Data Extract report on the
Runtime Intelligence Portal. It can also be downloaded from the File Feeds section.

Download Message Data

The Runtime Intelligence Portal provides the capability to securely download raw
message data originating from instrumented applications. The data is available in
CSV files compatible with MS Excel or OpenOffice Calc.

To obtain raw message data, access the Runtime Intelligence Portal at
http://runtimeintelligence.com. Enter the User Name and Password provided by
PreEmptive Solutions and then navigate to File Feeds, located under Data Extracts.

annotations/com/preemptive/annotation/instrumentation/PropertySource.html
http://runtimeintelligence.com/

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 109

Tamper Checking and Response

DashO can instrument applications to detect if they have been tampered with and
optionally send a message to a PreEmptive Analytics server. Tamper checking
requires that your application be signed either by DashO or by another process
following instrumentation by DashO. The tamper checking and response are
implemented using instrumentation Custom Annotations that can either be placed in
your source code or added via Virtual Annotations.

Tamper Checking
To detect tampering place a TamperCheck on one or more methods in your
application. DashO adds code that performs a runtime check that verifies the code
has been signed by a particular certificate. If the check fails you can respond to it in
one or more ways. You can choose one or all of the following at the time the check
is performed:

 Send a tamper message.
A tamper message will be sent to a PreEmptive Analytics server. The default is
to not send a message. If your application is using analytics and contains an
ApplicationStart you need no further configuration. If you are only using
TamperChecks then you need to supply the company and application IDs using
other annotations or provide them on the Instrumentation Properties panel.

 Call a method or set a field.
You can have the tamper state passed back to your application by invoking a
method that takes a single boolean or by setting a boolean field. When a tamper
check fails the boolean value is true. If the check passes then false is used.
Your application can act on this information immediately or store it for later
interaction with a TamperResponse annotation.

 Perform a response.
There are several immediate responses that can be taken: exit – exit the
application with a randomly non-zero return code; hang – cause the current
thread to hang; error – throw a randomly selected error; exception – throw a
randomly selected unchecked exception. If the value is left blank then the default
response of none is taken. The randomization of return codes and Throwables is
performed at time the check is injected not at run time. Errors and exceptions are
thrown with an empty stack trace to conceal their origin.

When you select more than one of these actions they are performed in the order
listed above. If you do not request any of these or none are valid the tamper check
will be skipped and DashO will produce a warning message.

An application can contain any number of TamperChecks with various configurations.
Using more than one check or mixing the responses will hamper attackers.

annotations/com/preemptive/annotation/instrumentation/TamperCheck.html

D A S H O ™ U S E R ’ S G U I D E

1 10 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Examples

private static boolean tamperFlag;

@TamperCheck(sendMessage=true, action="@tamperFlag")

public static void main(final String[] args){

}

@TamperCheck(response="hang")

private int computeResult(){

}

Interaction with Signing

The tamper check is performed by verifying at runtime that the code has been
signed by a particular certificate. If DashO is used to sign the resulting jars that no
further configuration is required. If the jars are signed by another process after using
DashO to add tamper checking you need to tell DashO about the signing information
using the SignerInfo annotation. This allows DashO to retrieve the key
information required to perform the runtime tamper checking. The SignerInfo lets
you specify information similar to what is found on the Output Signing panel.

Examples

@SignerInfo(storepass="${master.psw}", storetype="JKS",

alias="ProdKey")

@TamperCheck(sendMessage=true, action="@tamperFlag")

public static void main(final String[] args){

}

When you use the user interface to enter a password for storepass value and it
does not contain property references DashO will store the password in an encrypted
form.

Tamper Response

Separating the detection and response makes it more difficult for attackers. Having
multiple and different responses scattered through-out the application increases the
difficulty. Making those responses non-deterministic can make the process
maddening. DashO lets you configure your response to a tampered application as
simple or as complex as you desire.

The TamperResponse annotation adds code that interacts with a TamperCheck to
separate the detection and response code. You can add one or more
TamperResponses to your application.

The TamperResponse coordinates with the TamperCheck via a boolean value. A value
set using the TamperCheck's action is retrieved with the TamperResponse's source. If
the retrieved value is true then the response is executed.

annotations/com/preemptive/annotation/instrumentation/SignerInfo.html
annotations/com/preemptive/annotation/instrumentation/TamperResponse.html

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 111

Like the TamperCheck the TamperResponse can send a message and/or perform a
response. In addition the response action can be made conditional based on a
probability factor ranging from 0.0 (never) to 1.0 (always) – the default is 1.0.

private static boolean tamperFlag;

@TamperCheck(action="@tamperFlag")

public static void main(final String[] args){

}

@TamperResponse(source="@tamperFlag", sendMessage=true)

private void init() {

}

@TamperResponse(source="@tamperFlag", response="exit",

probability=.05)

private int computeResult(){

}

@TamperResponse(source="@tamperFlag", response="error",

probability=.1)

private FileInputStream readInput(){

}

When you are requesting the sending of analytics messages with TamperResponses
you may need to provide some additional configuration information. If your
application is using analytics and contains an ApplicationStart you need no further
configuration. If you are using TamperResponses that send messages then you need
to supply the company and application IDs using other annotations or provide them
on the Instrumentation Properties panel.

D A S H O ™ U S E R ’ S G U I D E

1 12 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Shelf Life

Shelf Life is an application inventory management function that allows you to add
expiration and notification logic to your application. This logic enforces an expiration
policy by exiting the application and/or sending an analytics message. For example,
a beta application can be made to expire on a particular date. You can schedule an
application’s expiration for a specific date or a number of days from a starting date
and optionally specify a warning period prior to expiration. The expiration information
may be placed within your application or can be read from an encrypted external
token file. The latter allows you to extend the expiration of the application by issuing
a new token file rather than rebuilding your application. Expiration checks can be
added to one or more locations in your application.

Activation Key

To start using Shelf Life you must obtain a Shelf Life Activation Key from PreEmptive
Solutions. This key is used to generate the tokens that contain the expiration
information. PreEmptive will issue you a data file containing the key that generates
the tokens and identifies your application on the Runtime Intelligence Portal. This
key is read by DashO when your code is instrumented and can either be specified in
the user interface or via a Shelf Life annotation.

Shelf Life Tokens
A Shelf Life Token is an encrypted set of data containing application and expiration
information. It can be inserted into your application or stored outside of the
application. You can use the DashO user interface or an Ant task to create an
externally stored token.

The expiration and warning information for the token is entered via the user interface
or via Shelf Life annotations. The annotations can either be added to your source or
added with DashO’s virtual annotations. Expiration and warning dates can be
specified in two different ways:

Absolute Dates – A fixed date for the expiration date or the beginning of the
warning period can be specified.

Relative Dates – The expiration period is the number of days from a start date. The
warning period is the number of days prior to the expiration date.

You can combine absolute and relative dates - e.g. expire on 1/1/2021 and warn 30
days before expiration. Expiration information is required to create the token, but
warning information is optional.

Expiration Check

The ExpiryCheck annotation is used to define the location in your application
where an expiration check will take place. The ExpiryCheck can be added to your
source or added with DashO’s virtual annotations. If you added the annotation to
your source you will need to compile with dasho-annotations.jar which is located in
the lib folder where you installed DashO. By default, DashO removes references to

annotations/com/preemptive/annotation/instrumentation/ExpiryCheck.html

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 113

these annotations; therefore, the jar is not required at application runtime and does
not need to be distributed with your application.

If the expiration information is set on the Instrumentation – Shelf Life screen, at the
minimum a key file and expiration date, only a single annotation is required to add
the expiration check:

Example

@ExpiryCheck

public static void main(final String[] args){

 if(args.length == 0){

 System.out.println("Hello no name");

 }else{

 System.out.println("Hello " + args[0]);

 }

}

This adds an expiration check to the application at the start of main(). You can also
specify all the information as annotations:

Example

@ExpiryKeyFile("yoyodyne.slkey")

@ExpiryDate("01/01/2021")

@WarningPeriod("30")

@ExpiryCheck

public static void main(final String[] args){

 // ...

}

The values for the annotations, dates and periods, are all strings. This allows you to
use DashO’s properties or environment values to parameterize them:

Example

@ExpiryKeyFile("${key_dir}/yoyodyne.slkey")

@ExpiryDate("01/01/${exp_year}")

@WarningPeriod("${warn_period}")

@ExpiryCheck

public static void main(final String[] args){

 // ...

}

D A S H O ™ U S E R ’ S G U I D E

1 14 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Relative Expiration Date

Expiration can be specified as a number of days from a dynamic start date. The start
date could be something like the install date or the date on which the application is
first run. The start date is provided at runtime by your application:

Example

@StartDateSource("getInstallDate()")

@ExpiryPeriod("90")

@ExpiryCheck

public static void main(final String[] args){

 // ...

}

private static Date getInstallDate(){

 return new Date(Preferences.userRoot().node("MyApp").

 getInt("installDate", 0));

}

You can use static or instance methods or fields as a source for the start date. See
Specifying Sources and Actions for details.

Externally Stored Tokens

In the previous example DashO has embedded the Shelf Life token into your
application. The token can also be stored externally as a file or resource and read in
at run-time:

Example

@ExpiryTokenSource("getToken()")

@ExpiryCheck

public static void main(final String[] args){

 // ...

}

private static Reader getToken(){

 return new

InputStreamReader(HelloWorld.class.getClassLoader().

getResourceAsStream("expiry.dat"));

}

The source for the token is a static or instance method that returns a
java.io.Reader that provides the token data. See Specifying Sources and Actions
for details.

Expiration Action

When ExpiryCheck is executed, the default action is to print a message to
System.out and to exit with a non-zero return code:

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 115

Example

This application expired on January 1, 2014

If the application is in the warning period a message is printed to System.out and
execution continues:

Example

This application will expire on January 1, 2014

For a more sophisticated application a custom application action can be specified:

Example

@ExpiryCheck(action="check()")

public static void main(final String[] args){

 // ...

}

private static void check(Token token) {

 if(token.isExpired()){

 JOptionPane.showMessageDialog(null,

 "The application expired on " +

token.getExpirationDate(),

 "Expired",

 JOptionPane.ERROR_MESSAGE);

 System.exit(1);

 }

 if(token.isInWarning()){

 JOptionPane.showMessageDialog(null,

 "The application will expire in " +

 token.getDaysTillExpiration() + " days",

 "Expiration Warning",

 JOptionPane.WARNING_MESSAGE);

 }

}

The action is passed the Shelf Life token that is then used to determine the action to
be taken.

Shelf Life Analytics Messages

Shelf Life can send Analytics messages so you can track applications that have
expired or are about to expire. The ExpiryCheck has a sendMessage property:

D A S H O ™ U S E R ’ S G U I D E

1 16 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Example

@ExpiryCheck(sendMessage=true)

public static void main(final String[] args){

 // ...

}

If your application already contains an ApplicationStart you do not need to add
any additional annotations. If you are going to use PreEmptive Analytics for tracking
expiration you must add annotations that will identify your application:

Example

@ExpiryCheck(sendMessage=true)

@CompanyId("DF29A894-C1AB-5947-E0A2-0D9779CFFB63")

@ApplicationId("F0000FDA-9500-1B92-9564-A9DA3D8C3CF0")

public static void main(final String[] args){

 // ...

}

The ExpiryCheck will then automatically handle the ApplicationStart and
ApplicationStop to send your expiration messages to the Runtime Intelligence
Portal.

Note

You can also add any of the following annotations with the ExpiryCheck to identify

your application: Company; CompanyId; CompanyName; Application; ApplicationId;
ApplicationName; ApplicationType; ApplicationVersion;
ApplicationVersionSource; ApplicationInstanceIdSource; UseSsl.

annotations/com/preemptive/annotation/instrumentation/ApplicationStart.html
annotations/com/preemptive/annotation/instrumentation/ApplicationStop.html

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 117

Exception Reporting

DashO can instrument applications to report on unhandled exceptions thrown by an
application and optionally send a message to a PreEmptive Analytics server.
Additionally the application can be instrumented to report on exceptions that are
caught, uncaught, or thrown at the method level. The exception reporting is
implemented using instrumentation Custom Annotations that can either be placed in
your source code or added via Virtual Annotations.

Application and Thread-level Reporting
Unhandled exceptions can be intercepted and reported at either the application level
or on a per-thread basis. The unhandled exceptions can be sent directly to a
PreEmptive Analytics server for non-GUI applications without user interaction. For
GUI applications you can select to have a dialog box presented to your application's
user so they may choose to send the report or not. They will also be able to enter
information about the activities they were performing prior to the exception as well as
some contact information. This information is optional, but if entered is available on
the Runtime Intelligence Portal along with the exception information.

Application and thread-level reporting is added with the
AddUncaughtExceptionHandler annotation. Properties of the Annotation
determine if the handler is installed as the default handler or only for the current
thread and whether a dialog is displayed to the user.

Examples

@AddUncaughtExceptionHandler(showDialog=true)

public static void main(final String[] args){

 // ...

}

new Thread() {

 @AddUncaughtExceptionHandler(thread=true)

 public void run() {

 // ...

 }

}.start();

Allowing the user to interact with a dialog gives them an opportunity to override the
global opt-in setting. If the user chooses to send the report it will override an opt-out
from other Analytics messages. Your application will still require the configuration
information that will allow it to be identified to a PreEmptive Analytics Server. If the
dialog is requested in a non-GUI application the report will only be sent if the user
has opted-in to sending messages.

If you choose to send the report without user interaction the report will only be sent if
the user has opted-in to sending analytics messages.

annotations/com/preemptive/annotation/instrumentation/AddUncaughtExceptionHandler.html

D A S H O ™ U S E R ’ S G U I D E

1 18 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Note

These features are available as an API in the ExceptionHandler class.

Method-level Reporting
If you require a more fine grained approach to the reporting of exceptions you can
use Annotations to track exceptions at the method level. DashO provides three
Annotations that are used to add method level exception reporting:
ReportCaughtExceptions; ReportThrownExceptions;
ReportUncaughtExceptions. All three annotations support the following
behaviors:

 Send an analytics fault message.
A fault message will be sent to a PreEmptive Analytics server. This is the
sendMessage property. The default is to send a message. To send the message
your application must contains an ApplicationStart and the user must opt-in to
the sending of messages.

 Call a method or set a field.
You can have the exception passed back to your application by invoking a
method that takes a Throwable or by setting a Throwable field. This is the action
property.

If you use both behaviors the sending of the message is performed before the
action. The following example show how the reporting of exceptions can be added at
the class level so that it applied to all methods in the class. In the example the
messages are sent to a PreEmptive Analytics server as well as logged locally using
Log4J.

ri-lib/com/preemptive/instrumentation/ExceptionHandler.html
annotations/com/preemptive/annotation/instrumentation/ReportCaughtExceptions.html
annotations/com/preemptive/annotation/instrumentation/ReportThrownExceptions.html
annotations/com/preemptive/annotation/instrumentation/ReportUncaughtExceptions.html

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 119

Examples

import org.apache.log4j.Logger

@ReportCaughtExceptions(action="@onCatch()")

@ReportThrownExceptions(action="@onThrow()")

class MyClass {

 private final static Logger log =

Logger.getLogger(MyClass.class)

 public void execute(){

 // ...

 }

 private static void onCatch(Throwable t){

 log.info("MyClass caught " + t.getClass().getName(),

t);

 }

 private static void onThrow(Throwable t){

 log.warn("MyClass threw " + t.getClass().getName(),

t);

 }

}

In addition to these previously described properties the ReportUncaughtExceptions
annotation allows you to ignore the unhandled exception. Methods that have a
numeric return will return zero when an unhandled exception is ignored. Methods
that return objects or arrays will return null.

In the following example calling the div(x, 0) could cause an ArithmeticException
to be thrown and printed to System.err but the method would return zero.

Example

@ReportUncaughtExceptions(sendMessage=false,

action="onErr()",

 ignore=true)

int div(int num, int denom){

 return num / denom;

}

void onErr(Throwable t){

 t.printStackTrace();

}

D A S H O ™ U S E R ’ S G U I D E

1 20 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Getting Version Information

If you use DashO in an automated process you can get version information by
calling methods on classes in DashO. The DashOPro.jar contains classes that have
static methods that return version information. These classes are: DashOPro;
DashOProGui; Watermarker.

The classes contain the following static methods:

static String getVersion()

The version number in N.N.N format, e.g. 6.12.0

static int getVersionMajor()

The major version number, e.g. 6

static int getVersionMinor()

The minor version number, e.g. 12

static int getVersionRevision()

The revision number, e.g. 0

static String getFullVersion()

A human readable version of the version number. This may include text besides the

version in N.N.N format.

static String getFileVersion()

The version number of the DashO project file used by this release, in N.N.N format.
This may be different from the version returned by getVersion().

Additionally, the Lucidator.jar contains the Lucidator class which contains all of
the above methods except for getFileVersion().

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 121

Using Custom Encryption

You can configure DashO to use your own encryption algorithms to deal with the
strings found during the string encryption phase. The implementation can be as
simple or complex as you desire. Please keep in mind however, that a long running
decryption method will ultimately slow down your application. There are two parts to
this process: Encryption and Decryption. The encryption method is used when
DashO processes the project. The encryption class and method need to be
packaged in a separate jar and configured to be used by the project. The decryption
method is packaged with the application. The decryption class and method need to
be part of the inputs of the project and be configured to be used by the project.

Encryption
The encryption algorithm must be in a public static method that takes a single string,
the plaintext, as an argument and returns an array of two non-null strings, the key
and the ciphertext.

Example

public static String[] encrypt (String plainText) {

 String key = {however you want to determine it};

 String cipherText = {however you want to create it};

 return new String[]{key,cipherText};//The order is

important!

}

Decryption

The decryption algorithm must be in a public static method that takes two strings, the
key and ciphertext, as arguments and returns a single non-null string, the plaintext.
It must be able to properly decrypt the ciphertext created by the encryption method.

Example

public static String decrypt (String key, String cipherText)

{

 String plainText = {however you want to determine it};

 return plainText;

}

D A S H O ™ U S E R ’ S G U I D E

1 22 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Note

The decryption class can still be renamed, and obfuscated, but it will be excluded

from custom string encryption. If your decryption class uses other classes in your
input, you may need to manually exclude them from string encryption to avoid an

infinite recursive call at runtime. Custom Encryption is not supported in Quick Jar
projects.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 123

Sample Applications

DashO includes several sample applications that allow you to become more familiar
with using DashO. These samples are installed with DashO and are located in the
samples directory. Applications include:

 AndroidPA – An Android Application that uses PreEmptive Analytics to send
messages.

 Applet – A calculator Applet.
 Instrumentation – A sample of instrumentation using PreEmptive Analytics.
 Jsp-PA – A sample WAR file that illustrates the use of the PreEmptive

Analytics taglib in JSPs (Note: this sample is only installed if you installed the PA Taglib).
 Log4j – Use log4j to generate PreEmptive Analytics messages and exception

reporting without instrumentation.
 Multidir – Cross-directory obfuscation using the merge="false" output

option.
 Multijar – Cross-jar obfuscation using the merge="false" output option.
 PA-api – A simple example using the Java PA API.
 Shelflife – Several Examples

o Authorized-app – Using Shelf Life to add an authorization check and
a free trial period to an existing application.

o Basic – Use Shelf Life to add an expiration date to a hello world
application.

o CustomAction – Use a custom expiration action to bring up dialogs
when the application has expired.

o RelativeStart – Expire an application a certain number of days from a
dynamic start date.

o TokenSource – Read the expiration token from an external source, in
this case from resources.

 SimpleApp – A hello world type application.
 SimpleAppJar – A hello world type application using a Quick Jar project.
 SpringBean – An Spring Application showing how DashO deals with Spring

Beans.

Note

Please refer to the readme files as many samples have special configuration steps.

D A S H O ™ U S E R ’ S G U I D E

1 24 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Project File Reference

This section documents DashO’s XML project file. It contains detailed descriptions of
each option, making it useful as a reference, even if you are using the user interface
to generate a file for you.

DashO project files may have any name or extension, but the preferred extension is
.dox. Project files contain information about how a given application is to be
obfuscated. The project file is an XML document conforming to dasho.xsd distributed
with DashO.

<dasho>

The <dasho> tag is the outermost tag of the .dox file.

Version Attribute

The file version is a required attribute. It specifies the earliest version of DashO that
is capable of reading the project file. For example, you should be able to use a
version="6.9" project with version 7.2 of DashO without having to edit the project.

Example

<dasho version="7.2.0">

Note

DashO may create project files with versions different from the application version.

The file version represents the minimum version of DashO that is able to use the
project file.

<propertylist> Section

The optional property list section allows for the definition and assignment of
variables called properties. These may be used in the project file or to define the
values of other properties.

Example

<propertylist>

 <property name="projectname" value="myproject"/>

 <property name="projectdir" value="c:\myprojects"/>

</propertylist>

There is a built-in external property called dasho.basedir, which reflects the
directory in which the project file resides. For a new project that has not been saved,
dasho.basedir is not applicable.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 125

Properties are useful for creating project files that act as templates for multiple
projects, for different versions of the same project, and for simple portability across
different build environments.

Property References

A property is referenced with the following syntax:

Example

${property_name}

Property references are case sensitive, therefore, ${MyProjectDir} references a
different property than does ${myprojectdir}. If you reference a property that has
not been defined, its literal value is used. Properties may be defined in the terms of
other properties. The value of a property may be specified using one or more
property references including to references to environment variables. These property
references can include default values, indirection, or substitution syntax. Recursive
variable definition is not allowed.

DashO provides many flexible ways to reference properties:

${prop} Simple replacement. If the value for prop is undefined or is blank, then no

replacement takes place and ${prop} is left unchanged.
${prop:-default} Replacement with default value. If prop is defined and not blank, use its

value. Otherwise, use default as the value.
${prop:+value} Replace when defined. If prop is defined and not blank, then value is

used. Otherwise a blank string is substituted when prop is defined.
${prop:?message} Generate error if not set. If prop is defined and not blank then its value is

used. Otherwise an error with the text of message is generated and the
build ends.

${prop/pattern/replace} Replacement after pattern substitution. Replaces the first occurrence of
the regular expression pattern with the replacement text replace. If
replace is blank, then the matching text is deleted.

${prop//pattern/replace} Replacement after pattern substitution. Replaces all occurrences of the
regular expression pattern with the replacement text replace. If replace is
blank, then the matching text is deleted.

${prop/#pattern/replace} Replacement after pattern substitution. Replaces the leading regular
expression pattern with the replacement text replace. If replace is blank
then the matching text is deleted.

${prop/%pattern/replace} Replacement after pattern substitution. Replaces the trailing regular
expression pattern with the replacement text replace. If replace is blank
then the matching text is deleted.

${prop#pattern} Replacement after pattern deletion. Deletes the leading regular
expression pattern.

${prop%pattern} Replacement after pattern deletion. Delete the trailing regular expression
pattern.

${!prop} Indirect replacement. If prop is defined and not blank, then its value is
used as a property name. The value of this property is then used as the
replacement value. You can use indirect placement followed by any of the
previously described references.

Note

You can use ${prop:-} to substitute an empty string when prop is undefined.

D A S H O ™ U S E R ’ S G U I D E

1 26 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Dynamic Properties

In some places of the project file you can use dynamic properties whose values
contain information about the class or method that is being processed.

 ${CLASS_NAME} - the full name of the current class, including its package name.

 ${CLASS_SIMPLENAME} - the simple name of the class, i.e. the class name without
its package name.

 ${CLASS_PACKAGE} - the package name of the class, including a trailing period.
This will be an empty string for classes in the default package: use
${CLASS_PACKAGE:-} to ensure that the property will be expanded.

 ${METHOD_NAME} - the name of the current method. For constructors this is the
same as ${CLASS_SIMPLENAME}.

 ${PROP_NAME} - if the method is a setter or getter the name of the related
property. For constructors this is the same as ${CLASS_SIMPLENAME}.

The following properties values are dependent upon the location and name of the
project file

 ${dasho.file} – the absolute path of the project file.

 ${dasho.basedir} – the absolute path to the directory of the project file.

 ${dasho.project} – the name of the project file; no path or extension.

And these properties depend upon the execution environment.

 ${dasho.java.version} - the JVM version DashO detected; "1.5", "1.6", or "1.7".

 ${jce.jar} – the absolute path of the Java Cryptography Extension jar.

 ${jsse.jar} – the absolute path of the Java Secure Socket Extension jar.

 ${javaws.jar} – the absolute path of the Java Web Start jar.

Timestamp property

DashO provides the tstamp property to allow the insertion of information about the
current date and/or time. The tstamp property can be used in two different ways:

 ${tstamp} insert the date information using the default format for the locale.

 ${tstamp[pattern]} inserts the date information using a format specification.
The pattern is the same as used by Java's SimpleDateFormat class.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 127

Property Precedence

You can reference properties defined in your project file, values from Java’s system
properties, or from the environment. To resolve the value for the property DashO
consults the sources in the following order:

 Java system properties

 Environment properties

 Project file properties

In this way you can override properties defined in the project file using the Java
command line’s –D option or via Ant.

Properties may be used with the following tags:

 <entrypoints>/<applet>’s name attribute

 <entrypoints>/<ejb>’s name attribute

 <entrypoints>/<iappli>’s name attribute

 <entrypoints>/<library>/<jar> and <entrypoints>/<library>/<dir>'s path
attribute

 <entrypoints>/<midlet>’s name attribute

 <entrypoints>/<android>’s name attribute

 <entrypoints>/<publics>’s name attribute

 <entrypoints>/<quickjar>'s path attribute

 <entrypoints>/<servlet>’s name attribute

 <entrypoints>/<unconditional>’s name attribute

 <global>/<exclude>'s classname attribute

 <includenonclassfiles>/<copy>'s source and relativedest attributes

 <inputpath>/<pathelement> and <classpath>/<pathelement>'s location attribute

 <mapping>/<mapinput>'s suffix attribute

 <mapping>/<mapinput>'s path attribute

 <mapping>/<mapoutput>'s path attribute

 <mapping>/<mapreport>'s path attribute

 <output>/<dir>'s path attribute

 <output>/<jar>'s path and manifest attributes

 <output>/<constpooltag>’s value

 <output>/<sourcefile>’s value

 <premark>/<passphrase>’s value

 <premark>/<watermark>’s value

 <preverifier>’s value

 <rename>/<class-options>'s prefix attribute

 <rename>/<class-options>'s alphabet attribute

 <rename>/<member-options>'s alphabet attribute

 <report>'s path attribute

 <expiry>’s period, warningperiod, date, and warningdate attributes

 <expiry>/<property> name and value attributes

D A S H O ™ U S E R ’ S G U I D E

1 28 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

<global> Section

The optional global section is for defining options that apply across the entire run.
This section contains the global options and the global excludes.

Note

Global options are not case sensitive.

Fornamedetection Global Option

The fornamedetection option turns on DashO’s built-in ability to search for
dynamically included classes. This adds significant processing time to the run. It is
best to run your application with this on initially and then add these classes as entry
points to your file.

In some cases, it is not possible for DashO to determine which classes are
dynamically loaded. A program could request the name of the class to be loaded as
user-input or to be specified in an external file. However, most inclusions are not that
vague and DashO can safely determine what they are. The report file reports a
confidence level associated with a given class inclusion discovery. A HIGH
confidence level is almost assuredly correct. In other words, DashO detected
something such as:

Example

Class a = Class.forName("java.awt.Rectangle");

A POSSIBLE confidence level is an educated guess. DashO has detected code
similar to:

Example

String s = getUnknownString();

Class a = Class.forName(s);

Rectangle r = (Rectangle)a.newInstance();

In this case, DashO cannot detect which exact class is loaded. However, it does
“know” that the loaded class will be cast to a Rectangle. Therefore, DashO finds all
subclasses of Rectangle and includes them with a possible confidence level.

Using the fornamedetection option and running in force mode instructs DashO to
automatically include what it finds. Only do this if you are confident in DashO’s
determination.

Running in force mode does not stop even if it cannot determine dynamically loaded
classes for any given forName() call.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 129

Example

<global>

 <option>fornamedetection</option>

</global>

Ignorenotfoundclasses Global Option

The ignorenotfoundclasses option allows DashO to process an application even if it
encounters references to classes that are not present in the classpath. DashO
cannot ignore all missing classes: if it cannot find a super class or super interface it
cannot continue.

This option should only be used as a means to allow DashO to finish so that
information from the run can be gathered. Without access to all classes, DashO
cannot safely determine all needed dependencies.

Example

<global>

 <option>ignorenotfoundclasses</option>

</global>

Ignorebrokencalls Global Option

The ignorebrokencalls option allows DashO to process an application even if it
encounters references to methods in classes that it cannot find. This can be caused
by errors in your classpath or by jars that are out of date. Although DashO will be
able to process the classes, you will want to check the classpath and jars to make
sure they contain the classes you expect.

Example

<global>

 <option>ignorebrokencalls</option>

</global>

Force Option

When DashO detects the use of reflection in classes, it makes note of the location
and target of the reflective code and continues its analysis. At the end of the
analysis, it prints a reflection report and halts the build process. Once you have dealt
with all of the reflection issues in your project, the force option can be added to let
DashO complete the build. The force option can be specified in the project file or
passed to DashO via the command line --force option: the former is preferred.

Example

<global>

 <option>force</option>

</global>

D A S H O ™ U S E R ’ S G U I D E

1 30 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Makepublic and Nomakepublic Global Options

By default, DashO changes the access modification of all classes, non-private
methods, and non-private fields to public before writing them to disk. This has
several ramifications:

 This solves the problem of classes that change package membership and
contain default methods.

 In general, this is not dangerous since DashO does not induce method calls into
your program. After all, the compiler enforced the access restrictions at compile
time.

 Feasibly, dynamic linking of public methods should be faster than that of more
restricted access levels. Primarily because public has no restrictions there is no
need for the runtime to verify equivalent package or class membership.

To stop this behavior, use the nomakepublic option; to force this behavior, use the
makepublic option; to use the default behavior, that is to let DashO decide what to
do, do not include either option.

Note

Using nomakepublic may cause access errors with protected/default methods. That

is, a class that was in a given package may now be in a new renamed package.
However, it may still access non-public classes from the original package causing

an access exception.

DashO’s default behavior generally avoids this problem and has been shown to be
safe for most applications.

Example

<global>

 <option>nomakepublic</option>

</global>

Renameforname Global Option

The renameforname option allows dynamically loaded classes to be renamed. In the
case where DashO cannot unambiguously determine the string used to load a class,
that class should be listed in the <entrypoints> section. These ambiguous cases
correspond to what the fornamedetection option would report as a possible
confidence level.

Note

Using assertions in your code with Java’s assert keyword makes a class self-

reflective. DashO will make that class non-renameable unless you use the
renameforname option.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 131

Example

<global>

 <option>renameforname</option>

</global>

Global <exclude>

The exclude option allows you to specify classes or methods that appear as part of
the input classes but should not be included in the final output of DashO. The
classes matching the regular expression of a global exclude will not be processed or
included in the final output.

For example, you could exclude tests or samples present in third party jars:

Example

<global>

 <exclude classname=”com\.thirdparty\.tests\..*”/>

 <exclude classname=”com\.thirdparty\.sample\..*”/>

</global>

The names of excluded classes are always specified as regular expressions.

Pre_7_0_exit_behavior Global Option

The pre_7_0_exit_behavior option forces DashO to use 0 (zero) as the return code
instead of the number of error messages. This has no impact when running in the
GUI, it has an impact when running the obfuscate and obfuscate-jar ant tasks or
when running DashO from the command line.

Example

<global>

 <option>pre_7_0_exit_behavior</option>

</global>

Haltonfirsterror Global Option

The haltonfirsterror option forces DashO stop processing when the first error
message is encountered.

Example

<global>

 <option>haltonfirsterror</option>

</global>

Bypassdasho Global Option

The bypassdasho option configures DashO to not process the inputs. The input jars
and directories will be directly copied to the output. This option can only be used
when merge attribute (on output) is set to false.

D A S H O ™ U S E R ’ S G U I D E

1 32 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Example

<global>

 <option>bypassdasho</option>

</global>

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 133

<inputpath> Section

The <inputpath> section contains the location of the classes that DashO will
process. DashO can handle directories, zip files, and jar files.

Example

<inputpath>

 <pathelement location=”c:\test\app.jar”/>

 <pathelement location=”c:\test\classes”/>

</inputpath>

Note

c:\test\classes is not to be any part of a package designation. It is to be the
directory where the packages are stored.

D A S H O ™ U S E R ’ S G U I D E

1 34 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

<classpath> Section

The <classpath> section contains the location of classes that DashO may need in
analyzing the input classes. These classes are typically third-party packages or jars
that are part of the Java Runtime Environment. DashO can handle directories, zip
files, and jar files in the classpath.

Example

<classpath>

 <pathelement location=”c:\test\app.jar”/>

 <pathelement location=”c:\test\classes”/>

</classpath>

Note

c:\test\classes is not to be any part of a package designation. It is to be the

directory where the packages are stored.

Systemclasspath attribute

Optionally you can append or prepend the system classpath4 in addition to the
directories and jars specified in the <classpath> section. The following option
appends the system classpath to the list of the directories and jars specified in the
<classpath> section.

Example

<classpath systemclasspath=”append”>

 <pathelement location="c:\test\classes"/>

 …

</classpath>

Appendrtjar attribute

By default DashO adds the runtime jar of the version of Java it is currently using. If
you need to use a different version you can control this behavior.

Example

<classpath appendrtjar=”false”>

 <pathelement location="c:\Java\jre1.5.0_12\lib\rt.jar"/>

</classpath>

4 The system classpath is composed of the values in the sun.boot.class.path
property and the CLASSPATH environment variable where available.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 135

Note

Projects that use J2ME or the Android API must use this option. These projects

require the runtime jar for these particular environments: e.g. midpapi10.jar or
Android.jar.

D A S H O ™ U S E R ’ S G U I D E

1 36 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

<entrypoints> Section

Entry points are starting points for the dependency analysis that DashO performs in
order to determine which classes, methods, and fields are used by your application.
In other words, these are the entry points for your application.

Entry points are analyzed by DashO to determine which classes, methods, and
fields are required for classes to function. For example, all methods called by your
entry points, and subsequent methods called by those methods, are required by
DashO. That is, if you tell DashO a specific main method is required, then all the
methods that main method calls are required as well.

<quickjar> Entry Point

The Quick Jar entry point may be used to obfuscate a program or an API library
encapsulated in a JAR file.

In order for this option to work for an application, the manifest of the JAR file must
contain a line of the form Main-Class: classname. Here, classname identifies the
class having the public static void main(String[] args) method that serves as
your application's starting point.

DashO uses this information in the manifest to do the static dependency analysis. If
the manifest does not have Main-Class information, DashO processes the jar as a
library. DashO automatically uses all the public methods in the jar as entry points.

Assume the input jar has a manifest file with a Main-Class entry:

Example

Main-Class: test.MyApplication

In this case, the main method of the class test.MyApplication will be considered as
entry point.

 You may specify multiple Quick Jar entry points; however, you cannot mix Quick
Jar entry points with any other kind of entry points.

 The pruning or removal feature of DashO is shut-off in quick jar mode and the
values put in the <removal> section are ignored.

 If you specify multiple Quick Jars as entry points, then DashO writes the
obfuscated classes to only a single output jar or directory.

 All the non-class files in the input jar are automatically included in the output.

 Control Flow, Optimization, and String Encryption includes and excludes are
ignored.

Example

<entrypoints>

 <quickjar path="c:\myapp.jar"/>

</classpath>

<method> and <field> Entry Points

Entry point methods indicate where your application starts. If you were looking at a
code listing and someone asked what that code did, where would you look first? You

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 137

would probably check if the code contained a main method. That main is the entry
point method for that application. In general, you use the main of a given class:

Example

<entrypoints>

 <classes name="test.MyApplication">

 <method name="main" signature="java.lang.String[]"/>

 </classes>

</entrypoints>

When specifying a signature for methods use fully qualified class names: as in the
above example, use java.lang.String[] rather than String[]. Multiple parameters
should be separated by commas without spaces. You can also specify constructors
as entry points using the special <init> notation as the method name. Remember to
use < and > since the project file is in XML.

Names of classes, members and method signatures can be specified as literals,
patterns, or regular expressions. See Names: Literals, Patterns, and Regular
Expressions for details.

Rename Attribute

By default entry points are not renameable since they are referenced by some
outside mechanism. In some cases entry points can be renamed. For example,
DashO will update the Main-Class attribute of a jars manifest with the renamed
class. In this case the class can be renamed, but the main method cannot. The
<classes>, <method> and <field> tag all have a rename attribute to control the
renameability of the item.

Example

<entrypoints>

 <classes name="test.OtherApplication" rename="true">

 <method name="main" signature="java.lang.String[]"/>

 </classes>

</entrypoints>

D A S H O ™ U S E R ’ S G U I D E

1 38 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

<publics> Entry Point

Like the <classes> entry point, the name attribute can be a literal, a pattern, or a
regular expression. At times, you may have a class that is an interface to your
application. It may have many methods that are entry points into your application. If
you wish to specify all the public methods of a given class as entry points, you can
specify each individually or use the <publics> tag.

Example

<entrypoints>

 <publics name="test.MyApplet"/>

</entrypoints>

The classes and members specified by the <publics> can also be made renameable
using the rename-class and rename-members attributes: both attributes are optional
and default to false.

Example

<entrypoints>

 <publics name="com.yoyodyne.**Bean" rename-class="true"

 rename-members="false"/>

</entrypoints>

<library> Entry Point

For API libraries, you can specify all public and protected methods of all classes in a
directory or jar by using the library option.

Example

<entrypoints>

 <library public="off">

 <dir path="myAPIDirectory"/>

 </library>

</entrypoints>

Note

If you add a directory or jar as a library it does not need to be added to the

<classpath>: DashO does this automatically.

<entrypoints>

 <library public="off">

 <jar path="myAPI.jar"/>

 </library>

</entrypoints>

The value of public can be on or off. If omitted, on is assumed.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 139

All public methods of all classes found through a recursive descent of all directories
below myAPIDirectory will be used as Triggers. The myAPIDirectory should not be
part of a package designation. It is to be the directory where the packages live: it
would be the same directory you would put on the classpath. Using a jar is
straightforward - all classes found in the jar are used.

If you would like only public methods to be used as entry points, you may use the
library tag with public set to on.

<classes> Entry Point

It is also possible to include classes without making assumptions about which
methods are to be included. Manually specifying classes here is vital for some
applications to package correctly. If you use the Class.forName() construct in your
application, DashO cannot determine all possible classes that are needed. In this
case, DashO informs you of the locations of the forName(s) and exits. You must
then manually enter those classes here and re-run DashO with the force option. Any
classes specified here are open to method and/or field removal.

Example

<entrypoints>

 <classes name="com.yoyodyne.Application"/>

</entrypoints>

This would cause DashO to load com.yoyodyne.Application but not use any
methods or fields as entry points. If that class overrides system methods or other
user-created methods, then its methods are included too. Classes entered this way
are renameable if the global renameforname option is turned on.

<unconditional> Entry Point

At times, you need a class to be included, even if it is not explicitly referenced by
other classes. This is done through the unconditional entry points. In this case all
members of the class are used as entry points and will appear in the output. Like
other entry points, the name may be a literal, a pattern or a regular expression. By
default the class and members are not renameable, but they can be made
renameable by using the rename-class and rename-members attributes.

D A S H O ™ U S E R ’ S G U I D E

1 40 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Entry Points for Special Applications

DashO has several distinct types of Java application configurations built-in. For
convenience, DashO defines special syntax to specify the entry points for some of
these applications. Names can be specified as literals, patterns or as regular
expressions: See Names: Literals, Patterns, and Regular Expressions. By default
the class and members are not renameable. All types use the rename-class attribute
and some support rename-membersmembers.

<applets>

An applet’s init() and paint() methods, among others, are automatically included.
Any methods that an applet overrides automatically become entry points. However,
you do need to specify the full format designation for what applet class is the entry
point class.

Example

<entrypoints>

 <applet name="test.MyApplet"/>

</entrypoints>

The <applets> tag uses the rename-class attribute (false by default), but not the
rename-members: the entry point members are defined by the interface and are not
renameable. Other methods in the class are renameable.

<servlets>

You may specify entry points for servlets as:

Example

<entrypoints>

 <servlet name="test.MyServlet"/>

</entrypoints>

The <servlets> tag uses the rename-class attribute (false by default), but not the
rename-members: the entry point members are defined by the base classes and are
not renameable. Other methods in the class are renameable.

<ejb> Enterprise Java Beans

Enterprise JavaBeans have their own notation to designate classes related to a
given EJB:

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 141

Example

<entrypoints>

 <ejb name="MyEntityBean"/>

 <ejb name="MyRemoteInterface"/>

 <ejb name="MyHomeInterface"/>

 <ejb name="MySessionBean"/>

 <ejb name="MyPrimaryKey"/>

</entrypoints>

The <ejb> tag uses both the rename-class (false by default) and rename-members

(false by default) attributes.

Note

Alternatively, you can use the <publics> notation with the EJBs to specify their

entry points.

<midlet> and <iappli>

DashO provides explicit support for applications written to the Mobile Interconnected
Device Profile (MIDP) specification (midlets). Your midlet class can be a subclass of
javax.microedition.midlet.Midlet at any level of descendancy.

Example

<entrypoints>

 <midlet name="test.MyMidlet"/>

</entrypoints>

Similarly, DashO explicitly supports applications written for NTT DoCoMo’s iAppli
framework. Your iAppli class can be a subclass of com.nttdocomo.ui.IApplication
at any level of descendancy.

Example

<entrypoints>

 <iappli name="test.MyIappli"/>

</entrypoints>

Both tags use the rename-class attribute (false by default), but not the rename-
members: the entry point members are defined by the base classes and are not
renameable. Other methods in the class are renameable.

Configuration for Midlet Projects

Do not include the Java Runtime Jar. See the appendrtjar attribute section. Instead
setup an environment variable or property that points to your installation of the
Wireless Toolkit from Oracle.

D A S H O ™ U S E R ’ S G U I D E

1 42 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Note

If you have an environment variable called WTK_HOME setup you can use it

directly or you can create a DashO property to use its setting.

Example

<propertylist>

 <!-- To force the environment variable to be set -->

 <property name="wtk.home" value="${WTK_HOME:?WTK_HOME not

defined}"/>

 <!-- To use a default if not set -->

 <property name="wtk.home" value="${WTK_HOME:-

C:\WTK2.5.1}"/>

</propertylist>

Add the cldcapi and midpapi jars to the classpath. These jars are part of the
Wireless Toolkit from Oracle.

Example

<classpath>

 <jar path="${wtk.home}/lib/cldcapi10.jar"/>

 <jar path="${wtk.home}/lib/midpapi10.jar"/>

</classpath>

Set up preverification for the project.

Example

<preverifier run="true">

 ${wtk.home}/bin/preverify.exe

</preverifier>

<android>

DashO provides support android classes. Your class can be a subclass of
android.app.Application, android.app.Activity, android.app.Service,
android.content.BroadcastReceiver, or android.content.ContentProvider. The
entry points are the classes listed in the AndroidManifest.xml. Only classes that are
not referenced outside your application should be renamed.

Example

<entrypoints>

 <android name="com.example.myApp.MyActivity"/>

 <android name="com.example.myApp.MyIntActivity" rename-

class=”true”/>

</entrypoints>

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 143

The <android> tag uses both the rename-class (false by default) and rename-
members (true by default) attributes.

<springbean>

DashO provides support Spring Beans. These will be classes referenced in your
beans.xml file. There are additional attributes supported on a <springbean> which
do not exist on other special classes:

 entrypoints – A comma separated list of the method names used in the
bean definition in attributes like:

o init-method – The method called by the Spring framework after
creating the bean.

o destroy-method – The method called by the Spring framework
before destroying the bean.

o factory-method – The method called by the Spring framework to
instantiate the bean.

 renamePropertyMethods – True/False (false by default): rename the
property methods: get*(), set*(*), and is*() (and the fields represented by
those methods).

 renameEntryPoints – True/False (false by default): rename the entry
point methods listed under the entrypoints.

Example

<entrypoints>

 <springbean name="com.example.spring.beans.MyBean"

entrypoints="initBean,destroyBean,createBeanOne,createBeanTwo

" rename-class="false" renamePropertyMethods="true"

renameEntryPoints="true"/>

</entrypoints>

The <springbean> tag uses both the rename-class (true by default) and rename-
members (true by default) attributes. All public constructors of these beans will be
preserved.

<report> Section
If a report file is specified, DashO creates a report indicating all methods and fields
removed. It also summarizes the total numbers for the entire project including total
method, field, and constant pool entry removals.

Example

<report path="c:\output\dasho-report.txt"/>

Since there is no removal in Quick Jar mode, there is also no report file produced.
Warnings and errors go to the console.

D A S H O ™ U S E R ’ S G U I D E

1 44 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

A snippet from a report looks like:

Example

Removal Option : Remove all unused

Dependency Report for Entry Points:

GifWiz.Editor.main(java.lang.String[])

gifwiz.ConsoleMessage

===

===========

 Removable Method display()

 Removable Method outline(int)

 Removable Field n

 Removable Field z1

gifWiz.Arc

===

===========

 Removable Method round(double)

 Removable Method update_scp()

 Removable Method update_scp(int)

 Removable Method corners()

 Removable Field ccw

 Removable Field cw

 Removable Field dalpha21

 Removable Field dalpha10

Each Removable method was determined by DashO to be unneeded during the
execution of the program.

DashO also outputs summary results for the run:

Example

Statistics In Out Change

===

===========

Classes 612 596 -2.6%

Methods 8975 7095 -20.9%

Fields 4953 2792 -43.6%

Constants 103306 90756 -21.9%

Processing Time: 4:46.977 min

This DashO run was able to remove almost 21% of all methods. However, this does
not mean the application size was reduced by 21%. The percentage of methods
removed may be only 1% of the application size.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 145

<output> Section

This option indicates whether you want DashO to write the output to a directory or a
jar file. The format of the output is dependent upon your renaming options. It also
controls whether the results are merged into a single output or retain the same
packaging as the input. If you specify no renaming, then the directory/package
structure that currently exists will be recreated in the specified directory so be sure
your destination is not the same as your source! If you rename, notions of packages
can be removed and all classes will be put in the directory specified.

Example

<output merge="true">

 <dir path="c:\output\"/>

</output>

Optionally you can specify a manifest with the jar output. DashO will copy the
manifest file to the output jar. If you specify a jar file for the manifest, it will be used
as the source of the manifest.

Example

<output merge="true">

 <jar path="c:\output\dashoed.jar"

manifest="c:\misc\Manifest.mf"/>

</output>

Note

Both path and manifest attributes support properties.

Jar Attributes

When DashO creates one or more jars, either by using the <jar> tag or when
merge=false, you can specify attributes that customize the jar creation:

 compress=”boolean” – Determines if the entries in the jars be compressed.
Defaults to true.

 level="0-9" – The compression level for jar entries. Defaults to 6. Higher values
give higher compression.

 filesonly="boolean" – Determines if the jars contain only file entries or both
field and directory entries. Defaults to true.

 includenonclassjars="boolean" – Determines if the jars that do not contain any
remaining classes should be included in the output. Defaults to false.

D A S H O ™ U S E R ’ S G U I D E

1 46 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Example

<output merge="false" compress="true" level="4"

filesonly="false">

 <dir path="c:\output\"/>

</output>

This sample would produce jars with a moderate level of compression that contained
entries for both the files and their directory structure.

Merge Attribute

DashO can combine the obfuscated results into a single directory or jar or keep the
original packaging of the input classes. This behavior is controlled using the
<output> tag's merge attribute. The values for the merge attribute are either true or
false. If the merge attribute is not provided it defaults to true.

merge="true"

This is the default mode for DashO. When merge="true" either a <dir path="…"/> or
<jar path="…"/> may be used for output. DashO will combine all obfuscated classes
into the indicated jar or output directory.

merge="false"

When merge="false" is specified only a <dir path="…"/> may be used for output.
DashO will preserve the original packaging of the input classes in the output
directory. Classes that came from jars will be placed in identically named jars in the
output directory. In addition, the manifest and non-class files from the jars will be
copied to the obfuscated jars. Classes that came from directories will be placed in
subdirectories in the output directory. DashO will try to preserve relative paths
between jars and directories that come from a common root location.

Note

The merge="false" option requires that a <dir path="…"/> tag. If a
<jar path="…"/> tag is provided then the merge="false" setting is ignored. In
Quick Jar mode the merging always takes place.

Autocopy Attribute

When merge="false" is specified you can also specify the autocopy attribute. When
autocopy="true" is specified non-class files in input jars input are automatically
copied to their respective output. Non-class files that appear in input directories are
never copied.

Example

<output merge="false" autocopy="true">

 <dir path="obfuscated"/>

</output>

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 147

<constpooltag>

You can covertly add constant pool entries for your class files to mark them. This
string will be placed in every class DashO outputs and will not be printed or evident
to the casual user. Only those using a class disassembly tool will be able to view this
string. The value attribute can contain property references including dynamic class
properties.

Example

<output>

 <constpooltag value="Copyright 1984 Yoyodyne Engineering,

Inc."/>

</output>

<sourcefile>

This tag allows you to set the value of Java's SourceFile attribute that is used in
stack traces. The value attribute can contain property references including dynamic
class properties.

Example

<output>

 <sourcefile value="${CLASS_SIMPLENAME}-v${ver}"/>

</output>

D A S H O ™ U S E R ’ S G U I D E

1 48 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

<removal> Section

The removal option allows you to specify what level of granularity you want for class,
method and/or field removal, and metadata removal. For class and member removal
there are two attributes on the tag classes and members. The options for these are:

 none - no removal

 unused-non-public - only remove unused items that are not public

 unused - remove all unused items

If both attributes are omitted or you do not specify <removal>, removal will not occur.

If you are packaging a true application - not something that’s sub-classed or called
by other classes - then the unused option is the best choice.

Pursuant to the license agreements you have with the third-party API libraries you
use, it is best practice to allow DashO to include all classes your application needs.
That way the resulting output would be one jar or directory that contains every class
your application needs, tailored specifically to how your application uses it.

Removal supports an <excludelist> element that contains rules that select classes,
methods, and fields that will not be removed. This element is explained in the
section on <includelist> and <excludelist> Rules.

Example

<removal classes="unused-non-public" members="unused"/>

Note

Removal is off in Quick Jar mode. Quick Jar mode ignores all the options set in the

removal section.

<debug> Section

This section instructs DashO to remove debug information inserted into the class
files by a compiler. The type attribute is used to specify the types of information to
be removed. The following types can be removed:

 SourceFile - The name of the source file from which the class was compiled.

 SourceDirectory - The location of the source file from which the class was
compiled.

 SourceDebugExtension - A tool specific string that is interpreted as extended
debugging information.

 LineNumberTable - Maps byte codes to a given line number in the original source
file. Used by debuggers and stack traces.

 LocalVariables - Used by debuggers to determine the name and type of local
variables during the execution of a method.

 LocalVariableTypes - Signatures for local variables that use generics.

Multiple items are separated by spaces.

Two special keywords are also supported:

 All – All the debug information will be removed.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 149

 None – None of the debug information will be removed.

If the <debug> section is not present then all debugging information is retained. If it is
present but the type attribute is not present then all debugging information is
removed.

Examples

<debug/>

<debug types="None" />

<debug types="SourceDirectory SourceDebugExtension" />

Note

The use of the control flow obfuscation transform requires the removal of local
variable information even when the <debug> section does not request their

removal.

<attributes> Section

The compiler stores additional metadata in attributes inside the class file. DashO lets
you determine the disposition of these attributes individually. The types attribute of
the tag is used to specify the type of attributes to be removed. The following types
can be removed:

 Exceptions - Indicates which checked exceptions a method may throw.

 Signature - Indicates generic types, method declarations with generics, and
parameterized types.

 Deprecated - Indicates that the class, interface, method, or field has been
superseded.

 Synthetic - Indicates a class member that does not appear in the source code.

 EnclosingMethod - Indicates the enclosing method for a local or anonymous
class.

 RuntimeVisibleAnnotations - Holds the annotations on a class, method, or field
that are visible with reflection.

 RuntimeInvisibleAnnotations - Holds the annotations on a class, method, or
field that are not visible with reflection.

 RuntimeVisibleParameterAnnotations - Holds the annotations on the parameters
to a method that are visible with reflection.

 RuntimeInvisibleParameterAnnotations - Holds the annotations on the
parameters to a method that are not visible with reflection.

 AnnotationDefault - Default values for annotation elements.

 InnerClasses - Indicates relationships between inner and outer classes.

 Unknown - All other attribute types.

Multiple items are separated by spaces.

Two special keywords are also supported:

 All – All the attributes will be removed.

D A S H O ™ U S E R ’ S G U I D E

1 50 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

 None – None of the attributes will be removed.

If the <attributes> section is not present then all attributes are retained. If it is
present but the type attribute is not present then the following attributes are
removed: Deprecated; Synthetic; RuntimeInvisibleAnnotations;
RuntimeInvisibleParameterAnnotations.

Examples

<attributes/>

<attributes types="All" />

<attributes types="Deprecated Synthetic" />

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 151

<methodCallRemoval> Section

DashO can remove calls to methods with void return types. This allows calls to
logging or console output to be easily removed from the production code. There are
no attributes for the methodCallRemoval element. All configuration is contained in
the <method> sub elements.

<method> Section

This section defines the methods that should not be called in the output.

The attributes of this tag identify the method not to call by class, method name and
signature.

 className – This string attribute specifies the name of the class containing the

method.

 methodName – This string attribute specifies the name of the method.

 signature – This string attribute specifies the parameters of the method.

className attribute

The className string attribute contains the full name of the package and class that
contain the method. Only calls made to methods on this class directly will be
removed. Calls made to the same method name and signature on a subclass will
not be removed. Specifying a class name of ** will instruct DashO to remove all
calls the method and signature regardless of which class contains it. If ** is used, a
renaming exclusion rule must be added to prevent those methods from being
renamed.

methodName attribute

The method string attribute contains the name of the method. The method specified
cannot be an initialization or constructor method and much return void.

signature attribute

The signature string attribute contains the parameter types of the method. The
parameters must be specified in order and separated by commas. Array parameters
are specified by adding a [] for each dimension after the type name. When entering
object type parameters, the full path must be used. Exact case and spelling is
necessary as mistyping “double” as “doubel” will treat that parameter as an Object
with the name “doubel” instead of a primitive double.

Example

<methodCallRemoval>

 <method className="**" methodName="method1"

 signature="java.lang.String"/>

 <method

className="com.example.methodCallRemoval.SubSubClassOne"

 methodName="method2" signature="java.lang.String,

int, double,

 float[][]"/>

</methodCallRemoval>

D A S H O ™ U S E R ’ S G U I D E

1 52 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 153

<renaming> Section

DashO can rename classes, methods, and fields to short meaningless names. This
is significant in class size reduction and as an obfuscation technique. Subsequent
sections allow you to exclude given classes and members from being renamed.

Note

See the Advanced Topics regarding DashO’s renaming algorithm and its
ramifications.

This tag allows for the global control of renaming using the option attribute the
renaming of annotations. Valid values are on and off.

Example

<renaming option="on" renameAnnotations=”on”/>

<class-options> Section

The attributes of this tag control the renaming of classes.

 rename – This boolean option turns the renaming of classes on or off. When
false then classes will retain their original names.

 keeppackages – This boolean option allows you to rename the classes itself while

keeping the original package names and hierarchy.

 alphabet – a string that defines the characters used to create new class names.

 minlength – the minimum length of new class names.

 randomize – The new names for classes can be assigned in either a sequential

or random order. When this option is true identifiers are assigned in a random
order.

 prefix – This attribute specifies a prefix that is added to all renamed classes. If it

contains a period then the class is effectively placed in a new package.

prefix attribute

The prefix is appended to all renamed classes. By defining a prefix that contains a
period the renamed classes can be placed in a custom package.

Example

<renaming option="on"/>

 <class-options prefix="pkg.X_"/>

</renaming>

The following table shows the renaming possibilities using a prefix:

Prefix New Name

C Ca

pkg. pkg.a

pkg.X_ pkg.X_a

D A S H O ™ U S E R ’ S G U I D E

1 54 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

keeppackage attribute

When this option is true the name of the class is changed but the package portion of
its name remains unchanged.

Example

<renaming option="on"/>

 <class-options keeppackages="true"/>

</renaming>

An example of this type of renaming is:

Original Name New Name

yoyodyne.application.Main yoyodyne.application.a

yoyodyne.application.LoadData yoyodyne.application.b

yoyodyne.tools.BinaryTree yoyodyne.tools.c

yoyodyne.tools.LinkedList yoyodyne.tools.d

When used with a prefix the original package name appears before the portion
added by the prefix.

Example

<renaming option="on"/>

 <class-options keeppackages="true" prefix="x_"/>

</renaming>

This would result in:

Original Name New Name

yoyodyne.application.Main yoyodyne.application.x_a

yoyodyne.application.LoadData yoyodyne.application.x_b

yoyodyne.tools.BinaryTree yoyodyne.tools.sub.x_c

yoyodyne.tools.LinkedList yoyodyne.tools.sub.x_d

alphabet attribute

The optional alphabet attribute defines the characters that are used to create new
class names. If omitted the default alphabet is used. When defining an alphabet the
following restrictions apply:

 The minimum length of the alphabet is two characters. Three or more are
recommended for larger projects.

 The initial characters of the alphabet must be valid starting characters for Java
identifiers. You must have at least one starting character.

 The remaining characters of the alphabet must be valid characters for Java
identifiers.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 155

<member-options> Section

This section controls the renaming of methods and fields.

 keeppublics – When set to true all public methods and fields will retain their
original names. Usage of the library option in the <entrypoints> section treats

all public methods as entry points inherently retaining their original names.
Specifying this option would be redundant.

 alphabet – a string that defines the characters used to create new member

names. The use is the same as for the alphabet attribute of the <class-options>
tag.

 minlength – the minimum length of new member names.

 randomize – The new names for members can be assigned in either a sequential

or random order. When this option is true identifiers are assigned in a random
order.

<renaming> Exclude List

This section provides a dynamic way to fine tune the renaming of the input class
files. It can contain a list of exclude rules that are applied at runtime. If a rule selects
a given class, method, or field, then that item is not renamed.

Note

These rules are applied in addition to renaming restrictions defined by entry points.

The rules are logically OR-ed together: any item selected by at least one rule is not
renamed. The <excludelist> has support for excluding names by class, method,
and field.

Example

<renaming option="on">

 <excludelist>

 <classes name="samples.SimpleApp"

excludeclass="true"/>

 </excludelist>

</renaming>

D A S H O ™ U S E R ’ S G U I D E

1 56 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

<mapreport> Section

DashO can produce a report of all the renaming it has performed as well as statistics
about the renamed results. This is created using the nested <mapreport> tag.

Example

<renaming option="on">

 <mapping>

 <mapreport path="c:\workproject-mapreport.txt"/>

 </mapping>

</renaming>

Note

The path attributes support properties.

An example of the listing is:

Example

one.A (b)

===

===========

 a pub1(int)

 b def1(int)

 c pub2(int)

two.B (c)

===

===========

 a pub1(int)

 b pub2(int)

 c def1(int)

The new names of the classes and methods are shown. Bug tracking becomes
difficult after renaming, especially with a high incidence of method overloading,
making the map file essential. The map file also provides statistics regarding the
success of overload-induction:

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 157

Example

Number of Methods : 7095

 Renamed to ’a’ : 2031 (28.6%)

 Renamed to ’b’ : 786 (11.0%)

 Renamed to ’c’ : 484 (6.8%)

 Renamed to ’d’ : 327 (4.6%)

 Renamed to ’e’ : 230 (3.2%)

 Renamed to ’f’ : 169 (2.4%)

 Renamed to ’g’ : 131 (1.8%)

 Renamed to ’h’ : 120 (1.7%)

 Renamed to ’i’ : 106 (1.5%)

These statistics represent the total number of methods that were renamed to each
given name.

<mapoutput> Section

Specifying the <mapoutput> file option instructs DashO’s renamer to keep track of
how things were renamed for both your immediate review and to be used as input in
a future DashO run. This option creates a file that is used in the map input file to do
incremental renaming and decode obfuscated stack traces.

Accidental loss of this file can destroy your chances of incrementally updating your
application in the future. Therefore, proper backup of this file is crucial. For this
reason, DashO does not automatically overwrite this file if an existing one is found.

The attribute overwrite="true" instructs DashO to allow overwriting an existing file.

Note

The overwrite attribute is optional and if omitted, it defaults to false.

Example

<renaming option="on">

 <mapping>

 <mapoutput path="c:\work\project.map"

overwrite="true"/>

 </mapping>

</renaming>

D A S H O ™ U S E R ’ S G U I D E

1 58 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

<mapinput> Section

A file created from the <mapinput> option can be used in the incremental input file
option.

Example

<renaming option="on">

 <mapping>

 <mapinput path="c:\work\project.map"/>

 </mapping>

</renaming>

Suffix Attribute

The mapinput has an optional suffix option that can be used to immediately track
changes across incremental obfuscations (i.e., the suffix could be the date or some
other identifying string).

Example

<renaming option="on">

 <mapping>

 <mapinput suffix="new">

 <file path="c:\work\project.map"/>

 </mapinput>

 </mapping>

</renaming>

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 159

<optimization> Section

The optimization section allows you to specify options that are specific to byte code
optimization including fine-grained rules for including and excluding items. When the
option attribute is set to off, DashO skips optimization altogether, regardless of
what is in the rest of the section.

Example

<optimization option="on"/>

To fine tune where optimization takes paces the <optimization> section can contain
both a <includelist> and <excludelist> which contain rules that select classes and
methods. These are explained in the section on <includelist> and <excludelist>
Rules.

Example

<optimization option="on">

 <includelist>

 <classes name="samples.**"/>

 </includelist>

 <excludelist>

 <classes name="samples.SimpleApp"/>

 </excludelist>

</optimization>

Note

Quick Jar mode ignores all includes and excludes in the <optimization> section.

<controlflow> Section

The control flow section allows the user to specify options that are specific to control
flow obfuscation including fine-grained rules for including and excluding items. When
the option attribute is set to off, DashO skips control flow obfuscation altogether,
regardless of what is in the rest of the section. When the tryCatch attribute is not
set or is set to on, additional exception handlers will be added to the code to further
confuse decompilers. The catchHandlers attribute determines the maximum
number of exception handlers to add to a method.

Example

<controlflow option="on" tryCatch="on" catchHandlers="1" />

Control flow obfuscation adds an extra level of protection for your Java code but at
times, this transformation is drastic and can affect performance. To fine tune where
control flow obfuscation is performed the <controlflow> tag can contain both a
<includelist> and <excludelist> which contain rules that select classes and
methods. These are explained in the section on <includelist> and <excludelist>
Rules.

D A S H O ™ U S E R ’ S G U I D E

1 60 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Example

<controlflow option="on">

 <excludelist>

 <classes name="SimpleApp"/>

 </excludelist>

</controlflow>

Note

Quick Jar mode ignores all includes and excludes in the <controlflow> section.

<stringencrypt> Section

The string encryption section allows the user to specify options that are specific to
string encryption obfuscation including fine-grained rules for including and excluding
items. When the option attribute is set to off, DashO skips string encryption
altogether, regardless of what is in the rest of the section.

Example

<stringencrypt option="on"/>

String encryption hinders examination of your code by making it more difficult to use
simple string searches to locate critical parts of your program but decrypting the
strings at runtime does add some performance overhead. To fine tune where strings
are encrypted the <stringencrypt> tag can contain both a <includelist> and
<excludelist> which contain rules that select classes and methods. These are
explained in the section on <includelist> and <excludelist> Rules. This section also
may include a <seInput> and <seOutput> which are explained in the <seInput> and
<seOutput> section.

Example

<stringencrypt option="on">

 <includelist>

 <classes name="com.yoyodyne.**"/>

 </includelist>

 <excludelist>

 <classes name="com.yoyodyne.ui.**"/>

 </excludelist>

</stringencrypt>

Note

Quick Jar mode ignores all includes and excludes in the <stringencrypt> section.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 161

level and implementations attributes

The level and implementations attributes allow you to increase the complexity of
the string encryption process. The value from level goes from 1 with a simple but
fast decryption to 10 with a complex implementation that can slow down parts of your
application. The default value for level is 1. Increasing the value uses a mix of
expressions that complicate the decompilation or reverse engineering of the string
values. Larger values also introduce randomness into the implementation of the
decryption methods to make locating them by byte code patterns more difficult.

The implementations attribute determines how many unique decryption methods will
be generated and added to classes in the input. The names of the methods and
signatures are randomly selected. The decryption methods are placed in the
shortest named classes to minimize application size growth. For classes with equal
length names those with more methods or greater complexity are selected first. Up
to ten implementations can be added.

Example

<stringencrypt option="on" level="3" implementations="4">

<decrypter> Section

This section lets you control where DashO will place the method that is used to
decrypt the strings at runtime. This tag is similar to the <classes> tag used in
<includelist> and <excludelist> Rules. It has three attributes that select the class
where the decrypter method can be placed:

 name – The name of the class where the method can be placed. This can be the
name of the class, a pattern that selects the class, or a regular expression.

 regex – Determines the interpretation of the name attribute. If true then name is a
regular expression.

 modifiers – The modifiers used to select the class where the method can be
placed. See Modifiers attribute for details.

 excludedPackages – A comma separated list of packages that are excluded from
placing a decrypter class. The default packages are: java, javax, and android.

If the <decrypter> section is omitted then DashO will determine the location
automatically.

Example

<decrypter modifiers="static class” name="com.yoyodyne.**"/>

<seInput> Section

This section holds the file that describes the string decrypters from a previous run. It
is used during an incremental obfuscation.

Example

<seInput path="c:\example_project\prev_project-se.map />

D A S H O ™ U S E R ’ S G U I D E

1 62 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

<seOutput> Section

This section holds the file to store information regarding the string decrypters from
the current run. If this file exists, it will be overwritten.

Example

<seOutput path="c:\example_project\project-se.map />

<customEncryption> Section

This section holds the information concerning using a custom encryption and
decryption methods.

 useCustomEncryption – Sets if the custom encryption should be used

(true/false).

 encryptionJar – The path to the jar file containing the custom encryption class
and method.

 encryptionClass – The full name of the class that implements the custom
encryption method.

 encryptionMethod – The name of the method used to encrypt the strings.

 decryptionClass – The full name of the class that implements the custom

decryption method.

 decryptionMethod – The name of the method used to decrypt the strings.

 It must also contain an <includelist> which contains rules that the select
classes and methods on which to use the custom encryption. These are explained in

the section on <includelist> and <excludelist> Rules. Please note this include list
should be a subset of the overall classes/methods selected for string encryption.

 Please see the Using Custom Encryption section for more information concerning
custom encryption.

Example

<customEncryption useCustomEncryption="true"

encryptionJar="custEncryption.jar"

encryptionClass="com.example.myCustomEncryption.Encrypt"

encryptionMethod="myEncrypter"

decryptionClass="com.example.myProject.Decrypt"

decryptionMethod="myDecrypter" >

<includelist>

 <classes name="com.example.mySpecialClasses.**"/>

</includelist>

</customEncryption>

<make-synthetic> Section

This section controls the make synthetic obfuscation option. This option marks
methods and fields as synthetic, generated by the Java compiler, which confuses
some decompilers. The tag contains a single attribute, value, which has four
possible settings:

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 163

 none – No methods or fields are affected. This is the same as omitting the entire
section.

 private – Methods and fields that are private or package-private are made
synthetic.

 non-public – Methods and fields that are private, package-private, or protected
are made synthetic.

 all – All methods and fields are made synthetic. This is the default if the value
attribute is omitted.

MakeSynthetic supports an <excludelist> element that contains rules that select
classes, methods, and fields which will not be marked synthetic. This element is
explained in the section on <includelist> and <excludelist> Rules.

Example

<make-synthetic value="non-public"/>

D A S H O ™ U S E R ’ S G U I D E

1 64 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

<premark> Section

This section explains how to specify options that are specific to software
watermarking. If the option set to off, DashO skips PreMark altogether, regardless
of what’s in the rest of the premark section. When it is on, DashO watermarks your
application using the specified encoding and watermark string.

Example

<premark option="on"/>

Truncate Attribute

It is not possible for DashO to predict the maximum watermark string length until the
output jar has been generated. You can tell DashO what to do during a build when
your watermark string will not fit in the output jar. The default setting stops the build
with an error message. When set to on DashO truncates the string so it fits and
prints a warning message. In both cases, the message will indicate the maximum
watermark size.

Example

<premark truncate="on" option="on"/>

<encoding>

DashO uses character encodings, called character maps, to minimize the number of
bits required to encode a character. A small character encoding allows you to create
a longer watermark string.

Example

<premark option="on">

 <encoding name="7bit-a"/>

</premark>

DashO defines 5 character maps you can choose from to encode your watermark
string.

Name Description Bits/Character

6bit-a 6 bit Uppercase Alphanumeric and symbols 6

6bit-b 6 bit Alphanumeric and symbols 6

7bit-a 7 bit Alphanumeric and symbols 7

4bit-a 4 bit Hexadecimal 4

utf8 Any Character 8

The watermark string can have only those characters that are legal for the specified
encoding. For example, if your string contains lower case letters, you cannot use an
encoding such as 6bit-a which only holds upper case letters.

Note

The user interface displays the specific characters defined in each character map.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 165

<watermark>

This option sets the watermark to be embedded in the output jar. The characters in
the watermark string must comply with the character set permitted for the specified
encoding.

The maximum size of the watermark string is governed by your configuration options
and by the complexity of the target jar. In general, you can fit bigger strings in bigger
jars.

Example

<premark option="on">

 <watermark>Copyright Yoyodyne Engineering,

Inc.</watermark>

</premark>

<passphrase>

In addition, the encryption algorithm has a fixed block size. If you choose to encrypt
the watermark string, it will require more space. As a result, the maximum length of
your watermark string may be smaller than it is without encryption.

Example

<premark option="on">

 <passphrase>secret</passphrase>

</premark>

<includenonclassfiles> Section

DashO can copy related non-class files into its destination directory to jar as part of
the run. For example, assume your application is embedded within a jar file that
contains gif files scattered throughout the directory hierarchy in the jar. In addition to
putting obfuscated class files into the destination, it can also copy the gifs to any
other non-class files into the destination you specified.

It is also possible with non-class file includes to specify a relative path from the root
of the destination directory or root of the jar to which the non-class files are copied.
This relative path is optional. If a relative path is not specified, individual non-class
files are copied to the root of the destination directory or jar.

Note

XML configuration files found when processing the non-class files may be updated

allowing class and method names to be changed.

In the following example DashO copies the non-class file to the root of the
destination directory or jar.

D A S H O ™ U S E R ’ S G U I D E

1 66 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Example

<includenonclassfiles>

 <copy source="c:\gifs\important.gif"/>

</includenonclassfiles>

In the following example DashO will copy the .gif files in the directory c:\gifs to the
root of the destination directory or jar. Other directories in the source will not be
searched for the .gif files.

Example

<includenonclassfiles>

 <copy source="c:\gifs*.gif"/>

</includenonclassfiles>

In the following example the non-class file will be copied to the directory
c:\test\dashoed\gifs. A sub directory gifs will be created in the output directory
c:\test\dashoed.

Example

<output>

 <dir path="c:\test\dashoed"/>

</output>

<includenonclassfiles>

 <copy source="c:\gifs\important.gif"

relativedest="/gifs"/>

</includenonclassfiles>

If a directory is specified as the source, all non-class files, found through a recursive
decent, are copied to the destination while preserving the hierarchy.

Example

<includenonclassfiles>

 <copy source="c:\nonclassfiles\"/>

</includenonclassfiles>

If a jar or zip file is specified, all non-classes are copied while preserving the internal
hierarchy.

Example

<includenonclassfiles>

 <copy source="c:\test\nonclassfiles.jar"/>

</includenonclassfiles>

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 167

If a relative path is specified with a jar or zip file, the hierarchy is recreated under the
specified relative path.

Example

<includenonclassfiles>

 <copy source="c:\test\nonclassfiles.jar"

relativedest="misc"/>

</includenonclassfiles>

Note

All non-class files from a jar specified using <quickjar> entry points are

automatically copied to the destination jar.

<preverifier> Section

If you are running a J2ME CLDC application, DashO allows you to run the preverifier
on the class files after DashO has finished processing the application. If you have
set the run attribute to true, you can specify the path to the preverifier program. If
you specify only a path, DashO assumes that the program name is preverify.

The <preverifier> tag also contains the following attributes that pass additional
options to the preverifier:

 nofinalize="true/false" – Pass -nofinalize to the preverifier: no finalizers
allowed.

 nonative="true/false" – Pass -nonative to the preverifier: no native methods
allowed.

 nofp="true/false" – Pass -nofp to the preverifier: no floating point operations
allowed.

Example

<preverifier run="true" nonative=”true” nofp=”true”>

 ${wtk.home}/bin/preverify.exe

</preverifier>

<signjar> Section

This section lets you run the jarsigner tool on the jars created by DashO. Additional
details on jar signing can be found in jarsigner - JAR Signing and Verification Tool.
The <signjar> tag has the following attributes:

 option="on/off" – Turns signing on or off. If not present, the default is on.

 keystore="…" – The URL to the key store. Optional, defaults to .keystore in the
user's home directory. If the URL does not include a protocol the key store is
assumed to be a file.

 storepass="…" – Password for the key store. Required. This is also the default
value for the private key if keypass is not specified. The user interface stores this
in an encoded form but the value can be in plain text and may contain property
references.

http://java.sun.com/javase/6/docs/technotes/tools/solaris/jarsigner.html

D A S H O ™ U S E R ’ S G U I D E

1 68 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

 storetype="…" – The type of the key store. Optional, defaults to the value set for
keystore.type in the Java security properties file.

 alias="…" – Alias used to store the private key in the key store. Required.

 keypass="…" – Password for the private key used to sign the jar. Optional,
defaults to the password for the key store. The user interface stores this in an
encoded form but the value can be in plain text and may contain property
references.

 sigfile="…" – Base name for the .SF and .DSA files. Optional, defaults to value
derived from the alias.

 internalsf="true/false" – Include a copy of the signature file in the .DSA.
Optional, defaults to false.

 sectionsonly="true/false" – The signature file will not include a header
containing a hash of the manifest file. Optional, defaults to false.

Example

<signjar option="on"

 keystore="../dev/keystore" storepass="${keystore.psw}"

 alias="lazardo">

 ${jdk.home}/bin/jarsigner

</signjar>

<instrumentation> Section
This section describes how to specify instrumentation for PreEmptive Analytics. This
section includes options to define instrumentation properties, the handling of
annotations, and the definition of virtual annotations.

The <instrumentation> tag has the following attributes:

 option="on/off" – Turns DashO’s instrumentation feature on or off. If not
present, the default is on.

 honorAnnotations="true/false" – Determines if instrumentation annotations
present in the compiled classes will be acted upon. If true, then DashO will
process the instrumentation annotations in the classes. If not preset, then the
default is true.

 stripAnnotations="true/false" – Determines if instrumentation annotations
present in the compiled class will be retained in the output. If true, DashO will
remove the annotations. If not present, then the default is true.

 sendMessages="true/false" – When set to false no messages will be sent to a
PreEmptive Analytics server. If supportOffline is true then the messages will be
saved for later transmission. This feature can be controlled by the OfflineMode
and OfflineModeSource annotations or programmatically. If not present, then the
default is true.

 supportOffline="true/false" – Determines the disposition of messages that
cannot be immediately sent to a PreEmptive Analytics server. If set to true then
the messages will be stored locally until they can be sent to the server.
Messages may be stored locally when sendMessages is false or communication
to the server is not possible. This feature can be controlled by the
OfflineModeSupport and OfflineModeSupportSource annotations or
programmatically. If not present, the default is true

annotations/com/preemptive/annotation/instrumentation/OfflineMode.html
annotations/com/preemptive/annotation/instrumentation/OfflineModeSource.html
annotations/com/preemptive/annotation/instrumentation/OfflineModeSupport.html
annotations/com/preemptive/annotation/instrumentation/OfflineModeSupportSource.html

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 169

 fullData="true/false" – Determines how much information is sent that
identifies the user/host and the data sent with a system profile message. Setting
this to false will send the minimal amount of information which can reduce
startup and shutdown time. If not present, the default is true.

If the instrumentation tag is not present then annotations in the compiled classes will
be ignored, but retained in the output. If the option attribute is off, then the entire
instrumentation tag is ignored regardless of its contents. Since the attributes have
default values, the following tags are equivalent:

Example

<instrumentation />

<instrumentation option="on"

 honorAnnotations="true"

 stripAnnotations="true"

 sendMessages="true"

 supportOffline="true"

 fullData="true"/>

Note

Instrumentation is not available in Quick Jar mode. Quick Jar mode ignores all the

options set in the instrumentation section.

The <instrumentation> tag only processes or removes the annotations from the
com.preemptive.annotation.instrumentation package. For information on these
annotations see the related javadoc.

<endpoint> Section

The <endpoint> defines where the runtime information will be sent. The endpoint tag
has the following attributes:

 name="name" – This is the location of the PreEmptive Analytics server. The end
point is like a URL but does not include the protocol. If not specified the
commercial Runtime Intelligence server is used.

 ssl="true/false" – Should HTTP or HTTPS protocol be used when sending
data to the endpoint. The default value is true.

These values can also be set by the Endpoint and UseSSL annotations.

annotations/index.html
file:///C:/Documents%20and%20Settings/rvirostko/workspace/trunk/doc/annotations/com/preemptive/annotation/instrumentation/Endpoint.html
file:///C:/Documents%20and%20Settings/rvirostko/workspace/trunk/doc/annotations/com/preemptive/annotation/instrumentation/UseSSL.html

D A S H O ™ U S E R ’ S G U I D E

1 70 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

<runtime> Section

The instrumentation tag can contain an optional runtime tag that is used to specify
which PreEmptive Analytics System implementation jar will be used with the
application and how it will be handled. If the tag is omitted then the default values for
its attributes will be used. The runtime tag has the following attributes:

 target="java15" – The execution environment for the application. The supported
values are: java15 for Java 1.5 through 1.7; android4 for Android SDK 1.6 and
up.

 merge="true/false" – Will the runtime library be merged with the application’s
classes. The default value is true which allows DashO to merge the classes into
the output allowing for full renaming and pruning of the implementation’s classes.
If false, then the implementations jar will need to be shipped with the application
and added to its class path.

Example

<instrumentation>

 <runtime target="java15" merge="true" />

</instrumentation>

Android Use

For Android projects you must add the android.permission.INTERNET permission to
your AndroidManifest.xml so that PreEmptive Analytics can send data.

<company> and <application> Sections

The instrumentation tag can contain optional company and application tags. These
define property values that are used by instrumentation. The tags and all their
attributes are optional.

<company>

 name="name" – the name of the application.

 id="id" The ID of the company providing the application. This value must be
specified as a GUID and must be a value obtained from PreEmptive Solutions.

<application>

 name="name" – The name of the application.

 id="id" – The ID of the application. This value must be specified as a GUID.

 version="version" – The version of the application. This version can be
expressed in any format.

 type="type" – The type of application. The type can be any user defined string.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 171

Example

<instrumentation>

 <company name="Yoyodyne Engineering, Inc."

 id="DF29A894-C1AB-5947-E0A2-0D9779CFFB63" />

 <application id="40A80B91-FB16-BB0F-96CF-6931B4472204"

 version="9.3.4" type="Swing App" />

</instrumentation>

D A S H O ™ U S E R ’ S G U I D E

1 72 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

<expiry> Section

The instrumentation tag can contain optional expiration information. These define
the values that will be used by the ExpiryCheck annotation to create an expiration
token that is placed in the application. Note that all of the attributes can contain
property references that are expanded at the time the injection takes place.

 key="file" – The Shelf Life key file obtained from PreEmptive Solutions.

 date="date" – A fixed expiration date in MM/DD/YYYY format. This is the date at
which the application will be considered expired.

 warningdate="date" – A fixed warning date in MM/DD/YYYY format. This is the date
on which warnings about expiration will be begin.

 period="days" – An expiration period. This is the number of days from a starting
date on which the application will be considered expired. The starting date is
provided by the application with the StartDateSource annotation.

 warningperiod="days" – A warning period. This is the number of days before the
expiration when the expiration warning period starts.

Combinations of fixed dates and periods are allowed. If values for both the fixed date
and period are present, the fixed date is used. Annotations that appear in the
application code or are defined via virtual annotations can override or augment these
values.

Example

<instrumentation>

 <expiry key="../yoyodyne.slkey"

 date="10/25/${EXP_YR}"

 warningperiod="90"/>

</instrumentation>

Expiration Token Properties

User defined properties may be added to the expiration token. These properties
have the same form as other DashO property tags. The properties may be examined
by the application when a user action is specified with the ExpiryCheck annotation.

Example

<instrumentation>

 <expiry key="…" date="10/25/2015">

 <property name="REGION" value="2"/>

 <property name="COUNTRY" value="GB"/>

 </expiry>

</instrumentation>

Both the name and value attributes may contain property references and are
expanded at the time the ExpiryCheck is injected.

annotations/com/preemptive/annotation/instrumentation/ExpiryCheck.html
annotations/com/preemptive/annotation/instrumentation/StartDateSource.html

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 173

Virtual Annotations

The instrumentation tag can contain one or more virtual annotation definitions.
DashO acts on these annotations as if they were in the compiled class files. Virtual
annotations can be used to augment existing annotations or to override their values.
The virtual annotations are associated with the compiled classes by using one or
more <classes> tags. These tags follow the same syntax as those found in include
and exclude lists. See the section on <includelist> and <excludelist> Rules for more
information.

Note

The classes tag does not support the excludeclass attribute, nor can it contain
field tags.

One or more annotations tags may appear inside a <classes> tag or its contained
<method> tag.

<annotation> Tag

The annotation tag defines the virtual annotation that will be applied to a class or
method. An annotation has two attributes and can have any number of nested
properties.

 name="name" – The name of the annotation. Although any name can be used
here, DashO only processes the annotations that are found in the
com.preemptive.annotation.instrumentation package. Annotations can be
referenced by their simple name, e.g., ApplicationStart, rather than their fully
qualified name.

 value="value" – An optional value for the annotation. Some annotations such as
SystemProfile do not use values, while others such as FeatureTick require one.
Values can contain property references that will be expanded when the
annotation is applied.

Example

<classes name="com.yoyodyne.Overthruster">

 <annotation name="CompanyId"

 value="DF29A894-C1AB-5947-E0A2-0D9779CFFB63"/>

 <method name="main" signature="java.lang.String[]">

 <annotation name="ApplicationStart"/>

 <annotation name="ApplicationStop"/>

 <annotation name="PropertySource" value="staticProps"/>

 </method>

</classes>

In this example, the main method bounds the application’s start and stop. Both
feature messages send along additional properties from the static field staticProps.
Note that the company name has been set on the class, but is then used by the
ApplicationStart in the main method. The order of the annotations is not important
- DashO sorts out the details when the code is instrumented.

annotations/com/preemptive/annotation/instrumentation/ApplicationStart.html
annotations/com/preemptive/annotation/instrumentation/SystemProfile.html
annotations/com/preemptive/annotation/instrumentation/FeatureTick.html

D A S H O ™ U S E R ’ S G U I D E

1 74 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Example

<classes name="com.yoyodyne.Overthruster">

 <method name="start" signature="">

 <annotation name="ApplicationStart">

 <property name="where" value="End"/>

 </annotation>

 <annotation name="Company">

 <property name="name" value="Yoyodyne Engineering,

Inc."/>

 <property name="id" value="DF29A894-C1AB-5947-E0A2-

0D9779CFFB63"/>

 </annotation>

 </method>

 <method name="stop" signature="">

 <annotation name="ApplicationStop"/>

 </method>

 <method name="testOscillation " signature="">

 <annotation name="FeatureStart" value="Oscillation

Test"/>

 <annotation name="FeatureStop" value="Oscillation Test"/>

 <annotation name="PropertySource"

value="getTestParameters()"/>

 </method>

</classes>

This example shows the use of annotations that contain properties. The
ApplicationStart is performed at the end of the start method. Although the
Company annotation does not have a value, it consists of two properties.

Annotation values can use both class and method dynamic properties. You can use
METHOD_NAME and PROP_NAME in annotations used at the class level. The actual values
will be expanded only when the annotation is applied to a specific method.

annotations/com/preemptive/annotation/instrumentation/Company.html

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 175

Specifying Sources and Actions

Several annotations specify sources or actions for dynamic information that will be
used with the generated information. These can reference either a field or a method
defined in the current class or a static method in a different class. Use the following
format for specifying the field or method:

 field - use a field in the current class as the source. If the source is used from a
static method it must be static, otherwise it must be an instance field.

 @field - use a static field in the current class as the source. This can be used
from static or instance methods.

 class.field - use a static field in the given class as the source. Class is a fully
qualified Java class name. This can be used from static or instance methods.

 method() - use a method in the current class as the source. If the source is used
from a static method it must be static, otherwise it must be an instance method.

 @method() - use a static method in the current class as the source. This can be
used from static or instance methods.

 class.method() - use a static method in the given class as the source class is a
fully qualified Java class name. This can be used from static or instance
methods.

Note

 Make sure the method and fields are properly marked with (or

without) a @ to indicate a static (or non static) field or

method in the current class. Do not put a @ when referencing

a static method or field in a different class. Make sure the

fields are the expected type as required by the annotation.

Make sure the methods have the expected return type and

parameters as required by the annotation.

D A S H O ™ U S E R ’ S G U I D E

1 76 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

<includelist> and <excludelist> Rules

Some tags in the project file use <includelist> and/or <excludelist> to fine tune
the items to which an operation is applied. These tags specify a list of rules that are
applied to select a given class, method, or field.

For tags that use both includes and excludes includes are determined first. If the
<includelist> is empty then all item are included. If an item is included then the
exclude rules are checked. If the <excludelist> is empty then no items are
excluded. Rules within each list are applied in the order that that they are specified
in the project file. Additionally, internal rules of DashO, the requirements of other
options, and the classes themselves may cause items to be excluded.

The name of classes and members and well as method signatures may be specified
as literals, patterns or regular expressions. See Names: Literals, Patterns, and
Regular Expressions for details. The modifiers of the item can also be used as
criteria, see Modifiers attribute for details.

<classes> Tag

The <classes> tag is used to define a rule that selects one or more classes. Note
that the class name should be fully qualified names and inner classes are specified
by using a $ as the separator between outer and inner class names.

The <classes> tag selects a class in order to specify additional rules for selecting
fields and methods. If the tag does not contain any <field> or <method> tags, then it
can be used to apply to either all members of the class or the class itself. This
behavior is determined by the option that is using the rule.

Some exclude lists allow a <classes> name to be applied to the class itself rather
than the members of the class. This is controlled by the optional, excludeclass
attribute. The default value for the excludeclass attribute is true. Please consult the
individual tags that use <excludelist> to see if the excludeclass attribute is used by
that option.

Examples

<classes name=".*" regex="true"/>

<classes name="library.Class1$NestedClass"/>

<classes name="myco.Test.MyOtherTest" excludeclass="false”>

<method> Tag

<method> tags are used inside the <classes> tag. Methods may be selected by
name and signature. The setting for the <method>’s regex is inherited from the
<classes> tag: if the value of regex for the enclosing <classes> is true, the name
and signature attributes are regular expressions. The following example selects all
methods beginning with set with any number of parameters using a regular
expression:

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 177

Example

<classes name=".*" regex="true"/>

 <method name="set.*" signature=".*"/>

</classes>

The signature attribute can be used as criteria for selection. The signature
attributes is a comma separated list of Java types that match the types in the
method’s parameter list. The class names of the parameters must be fully qualified.
Use an empty string to specify a method that has no parameters.

Example

<classes name=".*" regex="true"/>

 <method name="get[A-Z].*" signature=""/>

</classes>

<classes name=".*"/>

 <method name="set*" signature="int,MyClass,MyClass[]"/>

</classes>

<classes name="AnalysisEngine" />

 <method name="compute"

signature="int,java.util.List,float[]"/>

</classes>

<field> Tag

<field> tags are used inside the <classes> tag. The setting for the <field>’s regex
is inherited from the <classes> tag: if the value of regex for the enclosing <classes>
is true, the name attribute is a regular expression.

The <field> tag is not applicable to all include or exclude lists as the actions of
some options only apply to methods. Please consult the individual tags that use
include or exclude lists to see if the <field> tag can be used. The following example
selects all fields starting with counter using a regular expression:

Example

<classes name=".*" regex="true"/>

 <field regex="true" name="counter.*"/>

</classes>

Combining <method> and <field>

A <classes> tag can contain multiple <method> and <field> tags to create a rule that
selects many items in your project. For example:

D A S H O ™ U S E R ’ S G U I D E

1 78 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Example

<classes name="com\.yoyodyne\.beans\..*" regex="true">

 <method name="get[A-Z].*" signature=""/>

 <method name="set[A-Z].*" signature=".*"/>

 <method name="is[A-Z].*" signature=""/>

 <field name="CONST_.*"/>

</classes>

Modifiers attribute

The <classes>, <method> and <field> tags all have a modifiers attribute. The
attribute is used to match the item by its Java modifiers or keywords. Multiple
modifiers can be specified by separating them with spaces. If modifiers is omitted
then the modifiers of the item are not used as part of the matching criteria. The
modifiers are:

 public – the visibility of the item is public in the source code.

 protected – the visibility of the item is protected in the source code.

 private – the visibility of the item is private in the source code.

 default – this represents the default visibility given to an item when neither
public, protected, nor private has been specified in the source code.

 abstract – the item has been marked abstract in the source code. It has no
meaning when used with <field>.

 final – the item has been marked final in the source code.

 static – the item has been marked static in the source code.

 native – a method has been marked as native in the source code. It has no
meaning when used with <classes> or <field>.

 strictfp – the item has been marked as strictfp in the source code.

 synchronized – the method has been marked as synchronized in the source
code. It has no meaning when used with <classes> or <field>.

 transient – the field has been marked as transient in the source code. It has
no meaning when used with <classes> or <method>.

 volatile - the field has been marked as volatile in the source code. It has no
meaning when used with <classes> or <method>.

 class – the item is a class. This only has meaning when used with <classes>.

 interface – the item is an interface. This only has meaning when used with
<classes>.

 enum – the item is a enum. This only has meaning when used with <classes>.

 annotation – the item is a Java annotation. This only has meaning when used
with <classes>.

 synthetic – the Java compiler has created this item as an implementation detail
and it does not appear as part of the source code.

Unrecognized modifiers are ignored. Modifiers can also be specified as a negation
by adding an ! before the modifier. Modifiers are not case sensitive.

D A S H O ™ U S E R ’ S G U I D E

© 1 9 9 8- 2 0 1 4 PRE E MP TI V E SO LU TI ONS L LC . A LL R I G H TS R E S E RV E D 179

Examples

<classes modifiers="public class" name="com.yoyodyne.*" >

 <method modifiers="!private !native" name="*"

signature="**"/>

 <field modifiers="!public final" name="*" />

</classes>

<classes modifiers="!default !private !enum !annotation"

name="**" >

 <method modifiers="!default !private" name="*"

signature="**"/>

 <field modifiers="!default !private" name="*" />

</classes>

D A S H O ™ U S E R ’ S G U I D E

1 80 © 1998- 20 1 4 PRE EMP TI V E SOLUTI ONS LLC . ALL R I GHTS R E S E RV E D

Names: Literals, Patterns, and Regular Expressions

Name of classes and members may be specified as either a literal value, a pattern,
or as a regular expression. A literal value lets you specify exactly what item to match
while patterns and regular expressions let you match one or more items with a single
entry. By default names are treated as literal values unless they contain a ? or *. To
specify a regular expression, the regex="true" attribute must be added to the tag.

Using Patterns

Patterns are just like literal values but contain one or more of the following pattern
indicators:

 ? - Matches a single character.

 * - Matches zero or more characters, with limits. What can be matched depends
upon the type of item you are matching - this is discussed in the following
sections.

 ** - Matches zero or more characters without limits.

Patterns in Class Names

When a * is used in a class name it will match items within a single package, but not
in sub-packages. The ** pattern will match items within the package or any sub-
package.

Patterns in Method and Field Names

There is no difference between a * and ** used in method and field names. Both
match zero or more characters.

Patterns in Method Signatures

When patterns are used in method signatures, there is a difference between the *
and **. The * pattern will match zero or one argument to the method while the ** will
match any number of arguments.

For example:

Arguments
Patterns

* ** long,* long,**

No args
Int
java.lang.String

long,int

long,boolean,int

